電動(dòng)機(jī)端蓋模具設(shè)計(jì)【壓鑄模具】【說明書+CAD】
電動(dòng)機(jī)端蓋模具設(shè)計(jì)【壓鑄模具】【說明書+CAD】,壓鑄模具,說明書+CAD,電動(dòng)機(jī)端蓋模具設(shè)計(jì)【壓鑄模具】【說明書+CAD】,電動(dòng)機(jī),模具設(shè)計(jì),壓鑄,模具,說明書,仿單,cad
畢業(yè)設(shè)計(jì)(論文)
題 目:
端蓋模具設(shè)計(jì)
學(xué) 生: 陳 明
指導(dǎo)老師: 王 明 杰
系 別: 材料科學(xué)與工程系
專 業(yè): 材料科學(xué)與工程
班 級(jí): 材料科學(xué)0702
學(xué) 號(hào): 1607102205
2010年6月
福建工程學(xué)院本科畢業(yè)設(shè)計(jì)(論文)作者承諾保證書
本人鄭重承諾: 本篇畢業(yè)設(shè)計(jì)(論文)的內(nèi)容真實(shí)、可靠。如果存在弄虛作假、抄襲的情況,本人愿承擔(dān)全部責(zé)任。
學(xué)生簽名:
年 月 日
福建工程學(xué)院本科畢業(yè)設(shè)計(jì)(論文)指導(dǎo)教師承諾保證書
本人鄭重承諾:我已按有關(guān)規(guī)定對(duì)本篇畢業(yè)設(shè)計(jì)(論文)的選題與內(nèi)容進(jìn)行了指導(dǎo)和審核,該同學(xué)的畢業(yè)設(shè)計(jì)(論文)中未發(fā)現(xiàn)弄虛作假、抄襲的現(xiàn)象,本人愿承擔(dān)指導(dǎo)教師的相關(guān)責(zé)任。
指導(dǎo)教師簽名:
年 月 日
目錄
摘要 I
Abstract II
1 緒論 1
1.1 選題的依據(jù)和意義 1
1.2 國內(nèi)外壓力鑄造的發(fā)展動(dòng)向 1
1.2.1 國內(nèi)壓力鑄造的發(fā)展動(dòng)向 1
1.2.2 .國外壓力鑄造的發(fā)展動(dòng)向 3
1.3 研究或解決的問題 4
2 壓鑄件的結(jié)構(gòu) 5
3 壓鑄件工藝性分析 7
4 機(jī)械加工余量 8
5 鑄件線收縮及鑄件尺寸公差 9
6 壓鑄模具的設(shè)計(jì) 11
6.1 確定成型腔數(shù) 11
6.2 分型面的選擇 11
6.3 壓鑄機(jī)的選擇 12
6.3.1 臥式冷室壓鑄機(jī)結(jié)構(gòu) 12
6.3.2 .計(jì)算零件的投影面積 12
6.3.3 計(jì)算脹型力,鎖型力,初選壓鑄機(jī)型號(hào) 13
6.3.4 計(jì)算澆入合金液的重量 13
6.3.5 壓鑄機(jī)的校核 13
6.4 澆注系統(tǒng)的設(shè)計(jì) 14
6.4.1 澆注位置的確定 14
6.4.2 內(nèi)澆道的尺寸 14
6.4.3 橫澆道的尺寸 14
6.4.4 直澆道尺寸 15
6.4.5 溢流槽的設(shè)計(jì) 15
6.4.6 澆注系統(tǒng)的二維視圖 16
6.5 推桿尺寸計(jì)算 16
6.6 排氣、冷卻系統(tǒng) 17
6.7 模體設(shè)計(jì) 17
6.7.1 模體設(shè)計(jì)概述 17
6.7.2 模體尺寸 17
6.7.3 材料及熱處理后硬度 18
7 模具的裝配 19
8 結(jié)論 20
致謝 21
參考文獻(xiàn) 22
福建工程學(xué)院本科論文
電動(dòng)機(jī)端蓋模具設(shè)計(jì)
摘要
本次設(shè)計(jì)的端蓋壓鑄件為圓形端蓋類零件。最大外形尺寸為?64mm,內(nèi)孔尺寸為?28mm,兩側(cè)有外加的半圓形。鑄件壁厚局部不均勻,材料為鋁合金。
針對(duì)端蓋壓鑄件結(jié)構(gòu)及工藝要求,選擇端蓋口部大端面為動(dòng)靜模分型面。為了使動(dòng)、定模能夠準(zhǔn)確地動(dòng)作, 導(dǎo)向定位機(jī)構(gòu)利用導(dǎo)柱與導(dǎo)套的配合。各成形小孔由動(dòng)靜模型芯對(duì)接組成,頂出機(jī)構(gòu)是推桿推出的一次脫出機(jī)構(gòu),澆注系統(tǒng)采用中心澆道。
本模具考慮到年產(chǎn)量、設(shè)備及鑄件的精度要求,選擇一模二腔結(jié)構(gòu),并且采用UG來實(shí)現(xiàn)鋁殼體端蓋模具的三維設(shè)計(jì)及成型零件設(shè)計(jì)。
關(guān)鍵詞:壓鑄模具;加工工藝分析;鋁合金; 端蓋;CAD
The Mold design of Motor cover
Abstract
The cover die-casting piece in this design is circular cover part. The maximum shape dimension is ?64mm,and the inside hole dimension is ?19mm, besides, both sides have additional semicircle .The casting has a partly uniform thickness ,and is made of aluminum alloy.
According to the structure and process requirement of cover die-casting piece ,we select the large end of cover mouth as the Parting surface between the static and dynamic model .In order to make the static and dynamic model can accurately move, we use the cooperation of the guide-post and guide-sleeve in oriented positioning system.The forming holes are formed by the core butt of the static and dynamic model,The knockouts uses once ejecting mechanism that lifter pushes out.,and the gating system adopts center runner.
Taking into account the annual production, equipment and the requirement of accuracy ,we select a second cavity mode,and use UG to achieve the three-dimensional design and molding parts design of aluminum shell cover mold.
Keywords: die-casting mould; processing technology analysis; aluminium alloy;cover; CAD
I
1 緒論
1.1 選題的依據(jù)和意義
壓力鑄造工藝的諸多特點(diǎn),使其在提高有色金屬合金鑄件的精度水平、生產(chǎn)效率、表面質(zhì)量等方面顯示出了巨大優(yōu)勢(shì)。隨著汽車、摩托車等工業(yè)的發(fā)展,以及提高壓鑄件質(zhì)量、節(jié)省能耗、降低污染等設(shè)計(jì)要求的實(shí)現(xiàn),有色金屬合金壓鑄件、特別是輕合金(鋁及鎂合金)壓鑄件的應(yīng)用范圍在快速擴(kuò)張。有資料表明:工業(yè)發(fā)達(dá)國家用鋁合金及鎂合金鑄件代替鋼鐵鑄件正在成為重要的發(fā)展趨勢(shì)。目前壓鑄已成為汽車用鋁合金成形過程中應(yīng)用最廣泛的工藝之一,在各種汽車成型工藝方法中占49%。汽車、摩托車以及汽車附件的消耗需求,為壓鑄件生產(chǎn)提供了一個(gè)廣闊市場(chǎng),壓鑄鋁合金在汽車上的應(yīng)用將不斷擴(kuò)大。為了適應(yīng)市場(chǎng)需求,壓力鑄造要快速發(fā)展。
20世紀(jì)90年代以來,中國有色金屬壓鑄工業(yè)在取得令人驚嘆發(fā)展的同時(shí),已成為一個(gè)新興產(chǎn)業(yè)?,F(xiàn)全國共有有色金屬壓鑄企業(yè)3000家左右,壓鑄件產(chǎn)量從1995年的26.6萬t上升到2005年的87萬t,年均遞增率為12.58%,其中鋁合金壓鑄件占所有壓鑄件產(chǎn)量的3/4以上。
隨著技術(shù)水平和產(chǎn)品開發(fā)能力的提高,鋁合金壓鑄產(chǎn)品的種類和應(yīng)用領(lǐng)域在不斷擴(kuò)寬,其合金種類、壓鑄設(shè)備、壓鑄模具和壓鑄工藝都發(fā)生了巨大的變化。因此學(xué)習(xí)壓力鑄造是非常重要對(duì)現(xiàn)實(shí)也是非常有意義的。
1.2 國內(nèi)外壓力鑄造的發(fā)展動(dòng)向
1.2.1 國內(nèi)壓力鑄造的發(fā)展動(dòng)向
(1)壓鑄機(jī)
20世紀(jì)40年代中、后期,只有少數(shù)工廠從事壓鑄件生產(chǎn),分散在有一定工業(yè)基礎(chǔ)的大城市,各家工廠的壓鑄設(shè)備擁有量都很少,而且主要是小型壓鑄機(jī),其中熱室機(jī)和冷室機(jī)都有。壓鑄材料以鋅合金為主,有少量鋁合金、銅合金。20世紀(jì)50年代,基礎(chǔ)工業(yè)興起,一大批大型企業(yè)、工廠相繼建立,重點(diǎn)工廠大多數(shù)都有壓鑄生產(chǎn),壓鑄機(jī)全部進(jìn)口,較多是捷克(斯洛伐克)和前蘇聯(lián)的,少量是民主德國的’。一的工廠配備2~5臺(tái)壓鑄機(jī),最多的也不超過10臺(tái);壓鑄材料以鋁合金為主,鋅合金次之,少量銅合金和鎂合金;壓鑄模由各個(gè)工廠的模具車間自行制造,專業(yè)的壓鑄模制造廠尚未形成;1956年起,已經(jīng)有了我國設(shè)計(jì)制造的壓鑄機(jī),型號(hào)規(guī)格很少,少量供應(yīng)市場(chǎng),個(gè)別工廠還自制500kN級(jí)與1000kN級(jí)的壓鑄機(jī)供本廠使用。20世紀(jì)60年代起,壓鑄工業(yè)有了較大的發(fā)展。根據(jù)1991年的統(tǒng)計(jì)一,壓鑄件生產(chǎn)的廠點(diǎn)已經(jīng)達(dá)到752家,遍布全國各個(gè)省市和地區(qū),服務(wù)于工業(yè)、科技、教學(xué)等系統(tǒng)和領(lǐng)域,形成為具有相當(dāng)規(guī)模的行業(yè)[1]。當(dāng)時(shí),全國壓鑄機(jī)的擁有量為3434臺(tái),其中國產(chǎn)機(jī)2880臺(tái),占84%,進(jìn)口機(jī)554臺(tái),占16%。近10余年內(nèi),以珠三角(廣東一帶)、長(zhǎng)三角(蘇浙滬一帶)以及正在起步的環(huán)渤海等地域?yàn)樘卣?,加上東北老工業(yè)基地的重建和川渝陜新興的西部地區(qū),壓鑄件生產(chǎn)廠家就像雨后春筍似的拔地而起,使得對(duì)企業(yè)(廠家)數(shù)量和壓鑄機(jī)的擁有量統(tǒng)計(jì)難度較大,精確的數(shù)字缺乏。若僅以壓鑄件產(chǎn)量來說,按1991年16.5萬t作為基數(shù),至2009年達(dá)到148萬t,增長(zhǎng)了8倍,在此期間,每年都有8%~16%的增長(zhǎng)率[2]。
(2) 壓鑄模具
近年來,隨著我國制造業(yè),特別是汽車工業(yè)的迅速發(fā)展,鑄件市場(chǎng)需求大幅上揚(yáng),帶動(dòng)了鑄造模具制造業(yè)的興旺,生產(chǎn)總量在沖模、塑料模之后排列第三的鑄造模具約占我國模具總量的8% ,年銷售額約80億元。由于市場(chǎng)對(duì)大型、復(fù)雜、高品質(zhì)、高性能鑄件的要求,帶動(dòng)我國鑄造模具在生產(chǎn)規(guī)模和制造質(zhì)量以及其技術(shù)水平的提升,逐步形成了門類齊全、配套完善和分布廣泛的產(chǎn)業(yè)結(jié)構(gòu)。根據(jù)中國模具工業(yè)協(xié)會(huì)經(jīng)營(yíng)管理委員會(huì)編制的《全國模具專業(yè)廠基本情況》統(tǒng)計(jì),近4年來鑄造模具每年平均增長(zhǎng)速度高達(dá)24%[3]??傮w來說,中、小型鑄造模具的制作完全可滿足國內(nèi)的需求,大型、復(fù)雜、精密的鑄造模具依賴進(jìn)口的狀況得到較大改善;中、低檔模具供大于求,大型且要求高的鑄造模依然進(jìn)口不少(主要進(jìn)口國是日本、韓國、德國、意大利、美國) ;可喜的是國內(nèi)使用的大型、復(fù)雜的鑄造模具已從原先大量引進(jìn)到目前國產(chǎn)替代,并有少量出口,且出口量遂年遞增?,F(xiàn)代模具行業(yè)是技術(shù)、資金密集型的行業(yè)。近年來,我國模具行業(yè)結(jié)構(gòu)調(diào)整步伐加快,主要表現(xiàn)為大型、精密、復(fù)雜、長(zhǎng)壽命模具和模具標(biāo)準(zhǔn)件發(fā)展速度高于行業(yè)的總體發(fā)展速度,塑料模、壓鑄模比例增大,面向市場(chǎng)的專業(yè)模具廠家數(shù)量及能力增加較快,“三資”及民營(yíng)企業(yè)的發(fā)展很快。據(jù)國家統(tǒng)計(jì)局統(tǒng)計(jì),截至2006年底,中國模具制造業(yè)規(guī)模以上企業(yè)1314家,從業(yè)人員244155人;全年完成工業(yè)總產(chǎn)值555.61億元,實(shí)現(xiàn)銷售收入和利潤(rùn)分別為539.58億元和46.75億元,出口10億美元,進(jìn)口14.7美元。如果加上未統(tǒng)計(jì)的小型模具企業(yè),估計(jì)我國現(xiàn)有的模具生產(chǎn)廠超過2萬家,總從業(yè)人員在52萬人左右。壓鑄模的企業(yè),一般兼作其它模具。全國鑄造模具生產(chǎn)企業(yè),大體可以分成以下幾類:第一類為鑄造模具專業(yè)廠,包括合資和獨(dú)資企業(yè),這些廠設(shè)備先進(jìn)、技術(shù)優(yōu)良,是鑄造模具行業(yè)的主力。第二類是鑄造專業(yè)廠的模具車間。第三類是近年來發(fā)展迅速的私營(yíng)和民營(yíng)模具廠,規(guī)模不大,數(shù)量眾多,各有分工,分布在江浙、廣東一帶,部分廠已經(jīng)具備了一定的實(shí)力。第四類是兼做鑄造模具的其它一些模具廠。總之,鑄造模具生產(chǎn)企業(yè)呈多元化,并向高水平發(fā)得顯著的經(jīng)濟(jì)效益[4]。
(3)壓鑄模具材料
制造沖壓模具的材料有鋼材、硬質(zhì)合金、鋼結(jié)硬質(zhì)合金、鋅基合金、低熔點(diǎn)合金、鋁青銅、高分子材料等等。目前制造沖壓模具的材料絕大部分以鋼材為主,常用的模具工作部件材料的種類有:碳素工具鋼、低合金工具鋼、高碳高鉻或中鉻工具鋼、中碳合金鋼、高速鋼、基體鋼以及硬質(zhì)合金、鋼結(jié)硬質(zhì)合金等等。在模具中應(yīng)用較多的碳素工具鋼為T8A、T10A等,優(yōu)點(diǎn)為加工性能好,價(jià)格便宜。但淬透性和紅硬性差,熱處理變形大,承載能力較低。低合金工具鋼是在碳素工具鋼的基礎(chǔ)上加入了適量的合金元素。與碳素工具鋼相比,減少了淬火變形和開裂傾向,提高了鋼的淬透性,耐磨性亦較好。用于制造模具的低合金鋼有擔(dān)任著不可替代的角色。因此,壓鑄工業(yè)的發(fā)展在很大程度上是以汽車工業(yè)為依托;也可以說,壓鑄工業(yè)則是汽車工業(yè)的重要的支撐工業(yè)之一。CrWMn、9Mn2V、7CrSiMnMoV(代號(hào)CH-1)、6CrNiSiMnMoV(代號(hào)GD)等[5]。
(4)壓鑄應(yīng)用軟件和鑄件應(yīng)用范圍
壓鑄件的應(yīng)用范圍很廣,幾乎涉及所有工業(yè)門類,而在應(yīng)用中,若以數(shù)量之大,品種之多,要求之嚴(yán),品質(zhì)之高以及金屬材料用量之大等多方面綜合而言,則應(yīng)以汽車工業(yè)為最。在世界汽車工業(yè)的發(fā)展史上,各種零部件的設(shè)計(jì)和應(yīng)用過程中,壓鑄零件的采用則是重大的研究。課題之一,說明壓鑄工業(yè)在這方面擔(dān)任著不可替代的角色。因此,壓鑄工業(yè)的發(fā)展在很大程度上是以汽車工業(yè)為依托;也可以說,壓鑄工業(yè)則是汽車工業(yè)的重要的支撐工業(yè)之一[6]。模具企業(yè)應(yīng)用的軟件主要有CAD/CAM/CAE,在我國壓鑄應(yīng)用軟件起步比較晚,技術(shù)還沒有普及。
1.2.2 .國外壓力鑄造的發(fā)展動(dòng)向
壓鑄生產(chǎn)和壓鑄技術(shù)在工業(yè)發(fā)達(dá)國家中作為一個(gè)工業(yè)門類而稱為壓鑄工業(yè)。該工業(yè)隨著整個(gè)工業(yè)體系的發(fā)展和現(xiàn)代科學(xué)技術(shù)的進(jìn)步而飛速前進(jìn)。工業(yè)發(fā)達(dá)國家十分重視壓鑄工業(yè)的先進(jìn)技術(shù)的研究與開發(fā)工作。北美壓鑄協(xié)會(huì)研究開發(fā)委員會(huì)在1992年發(fā)起研究課題項(xiàng)目以來,到1995年,參與研究與開發(fā)工作的國家、研究機(jī)構(gòu)、企業(yè)和。大學(xué)日益增多。研究的課題項(xiàng)目涉及壓鑄的所有各個(gè)方面,這些研究在世界上都屬于高水平、第一流的[7]。研究者都表現(xiàn)出高度的負(fù)責(zé)精神和極大的熱情,愿意為促進(jìn)壓鑄工業(yè)的發(fā)展站在最前列。一個(gè)國際性的壓鑄工業(yè)聯(lián)合發(fā)展行動(dòng)已經(jīng)形成。
計(jì)算機(jī)技術(shù)在壓鑄上的應(yīng)用方面已開發(fā)的項(xiàng)目有:產(chǎn)品的輔助設(shè)計(jì)和快速原型制造、模具的輔助設(shè)計(jì)與制造、輔助管理、輔助工程和模擬。目前開發(fā)和討論較多的是計(jì)算機(jī)模擬技術(shù),模擬的對(duì)象包括:慢壓射速度對(duì)壓室內(nèi)的金屬流的影響、澆口設(shè)計(jì)和尺寸預(yù)示鑄件質(zhì)量、填充過程的流動(dòng)與熱分析、凝固過程、型腔內(nèi)氣體的影響、模具型腔失效起因、模具整體撓曲變形、預(yù)示鑄件缺陷(幾乎是任何類型的缺陷)等。下面僅以一個(gè)實(shí)例來展示計(jì)算機(jī)技術(shù)的應(yīng)用效果。該鑄件原為灰鑄鐵件,現(xiàn)改為壓鑄件。計(jì)算機(jī)輔助工作分為輔助設(shè)計(jì)模具和模擬流動(dòng)與熱分析。輔助設(shè)計(jì)的內(nèi)容有:幾何形狀設(shè)計(jì)、冷卻水道設(shè)置、澆口和溢流系統(tǒng)。模擬的連續(xù)填充和熱分析是用摘出的記錄圖片來說明(圖片順序依次為):連續(xù)填充(從“料餅”、澆口、型腔至溢流槽)、超過填充時(shí)間會(huì)產(chǎn)生冷隔的部位、型腔內(nèi)局部填充速度過高出現(xiàn)霧化并粘附型芯、凝固過程、熱節(jié)部位未得到壓實(shí)、不同部位(點(diǎn))的溫度2時(shí)間曲線(型腔和鑄件)、填充完畢12s后測(cè)得模具型腔最高溫度處為205℃、57s后取出鑄件而模溫下降、噴酒潤(rùn)滑劑后模溫繼續(xù)下降。所有彩色圖像(圖片)清晰明了、令人信服。
綜上所述,國外壓鑄的發(fā)展是包含許多方面和全方位的。我國壓鑄已經(jīng)有了良好的基礎(chǔ),今后,瞄準(zhǔn)國外的先進(jìn)技術(shù)、學(xué)習(xí)國外的經(jīng)驗(yàn),縮短差距,為提高我國壓鑄的生產(chǎn)水平和推動(dòng)技術(shù)進(jìn)步,則是國內(nèi)壓鑄業(yè)界和同仁共同努力的目標(biāo)。
1.3 研究或解決的問題
在分析端蓋零件壓鑄工藝的基礎(chǔ)上,論述了壓鑄模的設(shè)計(jì)要點(diǎn),利用UG軟件強(qiáng)大的三維造型功能,使用UG建模模塊中的旋轉(zhuǎn),陣列,倒圓等實(shí)體特征。構(gòu)造出端蓋的三維數(shù)據(jù)模型,并完成了端蓋的壓鑄模設(shè)計(jì)縮短了模具的設(shè)計(jì)和制造時(shí)間,增加了市場(chǎng)競(jìng)爭(zhēng)力。同時(shí)應(yīng)考慮到該壓鑄件內(nèi)部結(jié)構(gòu)較為復(fù)雜,壁厚薄不均,且薄壁上有孔洞,要求脫模時(shí)候,防止表面、特別是底部產(chǎn)生裂紋,推桿頂出時(shí)候受力要均勻,加工支承面應(yīng)平整無毛刺、氣泡和鑄造殘留物。鑄件底面厚度小,在模具設(shè)計(jì)時(shí)應(yīng)充分考慮分型面和澆注系統(tǒng)。
2 壓鑄件的結(jié)構(gòu)
端蓋是汽車零件的一個(gè)重要零部件,其外殼大多采用鋁合金壓鑄成形。其結(jié)構(gòu)如圖所示。
圖2-1 鑄件的結(jié)構(gòu)圖
圖2-2 鑄件的三維圖
該壓鑄件基本形狀為圓形端蓋類零件,最大外形尺寸?64mm,上內(nèi)孔尺寸為?19mm,下內(nèi)孔尺?34mm,圓環(huán)邊緣有三個(gè)圓形孔,兩側(cè)有加寬的半圓尺寸為?15mm。鑄件的平均壁厚為5mm,
但也有局部不均勻。
3 壓鑄件工藝性分析
本鑄件的材料為zl108,其抗拉強(qiáng)度為195MPa;硬度為HBS85,具有較高的室溫和高溫力學(xué)性能,耐熱性好,其鑄造工藝性能優(yōu)良,無熱裂傾向,氣密性高,線收縮小,但有較大的吸氣傾向,但切削加工性較差。
(1)出模斜度:出模斜度的大小與鑄件幾何形狀,高度或深度,壁厚及型腔或型芯表面狀態(tài)等有關(guān),在允許范圍內(nèi)宜采用較大的出模斜度,以減小所需要的推出力或抽芯力。
對(duì)于鋁合金,配合面的最小出模度外表面a=0°15′,內(nèi)表面b=0°30′,非配合面的最小出模斜度外表面a=0°30′,內(nèi)表面b=1°。
(2)壓鑄孔:壓鑄件上的孔應(yīng)盡量鑄出,這不僅使壁厚盡量均勻,減少熱節(jié),節(jié)省金屬材料,而且減少機(jī)加工工時(shí)。壓鑄工藝的特點(diǎn)之一是能直接鑄出細(xì)而深的小孔,《壓鑄技術(shù)手冊(cè)》表4-6鑄件中的6個(gè)通孔均符合壓鑄要求,但由于分型面的選擇,使直徑為5.5mm的孔不能鑄出,所以應(yīng)先鑄出3.5mm的通孔,然后加工。
(3)鑄造圓角等:鑄造圓角可使金屬液流暢,氣體容易排出,可避免因銳角而產(chǎn)生裂紋,因此在模具的拐角處應(yīng)采用鑄造圓角。
4 機(jī)械加工余量
由于壓鑄的特點(diǎn)是快速凝固,因此鑄件表面形成細(xì)晶粒的致密層,具有較高的機(jī)械性能,盡量不要加工去掉。過大的加工余量會(huì)暴露不夠致密的內(nèi)部組織。但是,某些部位還是應(yīng)該進(jìn)行機(jī)械加工。如裝配表面、裝配孔、成型困難沒有鑄出的一些形狀如此壓鑄件的側(cè)向螺紋孔、側(cè)向小孔,去除內(nèi)澆口、溢流口后的多余部分等。
影響鑄件加工余量主要是幾個(gè)裝配孔,參考《鑄造技術(shù)手冊(cè)》表4-13推薦的加工余量選擇,孔按直徑確定。直徑為3.5mm的加工余量為0.05mm,直徑為11mm的加工余量為0.15mm,直徑為34mm的加工余量為0.25mm。
5 鑄件線收縮及鑄件尺寸公差
鑄件的原材料為ZL108,參考《鑄造技術(shù)手冊(cè)》表4-11取阻礙收縮為0.4%,自由收縮為0.8%。參考《鑄造技術(shù)手冊(cè)》表4-15GB 6414-86,選擇鋁合金端蓋的壓鑄公差為CT=6。再由表4-15GB 6414-86,選取公差數(shù)值[8]。
圖5-1 鑄件的前視圖
圖5-2 鑄件的俯視圖
自由收縮:(mm)
1. 7.5*(1+0.008)=7.6±0.52 2. 51*(1+0.008)=51.4±0.70
3. 49*(1+0.008)=49.4±0.70 4. 44.5*(1+0.008)=44.9±0.70
5. 38*(1+0.008)=38.3±0.64 6. 26*(1+0.008)=26.2±0.64
7. 48*(1+0.008)=48.4±0.70 8. 5*(1+0.008)=5.0±0.48
9. 7*(1+0.008)=7.1±0.52 10. 5*(1+0.008)=5.0±0.48
11. 6*(1+0.008)=6.0±0.48 12. 7*(1+0.008)=7.1±0.52
13. 8*(1+0.008)=8.1±0.52 14. 10*(1+0.008)=10.1±0.52
受阻收縮:(mm)
(1) 19*(1+0.004)=19.1±0.58 (2) 3.5*(1+0.004)=3.5±0.40
(3) 5.5*(1+0.004)=5.5±0.48 (4) 11*(1+0.004)=11.0±0.54
(5) 34*(1+0.004)=34.1±0.64
6 壓鑄模具的設(shè)計(jì)
6.1 確定成型腔數(shù)
考慮到零件尺寸大小適中,在分型面上的投影面積也比較適中,本設(shè)計(jì)采用一模二腔的成型方法。
6.2 分型面的選擇
分型面是指壓鑄模具動(dòng)模和定模的結(jié)合表面,模具一般只有一個(gè)分型面[9]-[10]。在選擇分型面時(shí)有以下幾個(gè)要點(diǎn)。
(1) 有利于澆注系統(tǒng)的布置;
(2) 有利于型腔深度的減小,在設(shè)計(jì)高度低一點(diǎn)的盤、蓋、環(huán)類零件壓鑄模時(shí),原則上要選擇投影面積最大的端面為分型面。這樣不但模具的厚度小、結(jié)構(gòu)簡(jiǎn)單、加工制作方便,而且有利于模具上涂料的金屬液的填充、排氣,同時(shí)還有利于推桿機(jī)構(gòu)將壓鑄件推出。
(3) 有利于脫模,鑄件在開模后留在動(dòng)模部分內(nèi) 這樣才能便于脫模。
(4) 有利于壓鑄件精度的提高。
分型面確定對(duì)于壓型結(jié)構(gòu)的復(fù)雜程度和加工制造是否方便,以及鑄件質(zhì)量有很大的影響,為了方便取出鑄件,分型面取在鑄件的最大的截面上,且在開型時(shí),應(yīng)使鑄件留在動(dòng)型內(nèi)。最大截面圖中有兩個(gè),選擇在D處,如果使上部份做定模,下部份做動(dòng)模,在動(dòng)模上則會(huì)出現(xiàn)圓柱上大下小,不能脫模,如果動(dòng)定模相反,定模開模時(shí)不易取出;選擇在C處,上部份做動(dòng)模下部份做定模就不會(huì)出現(xiàn)這種情況,并且結(jié)構(gòu)簡(jiǎn)單,動(dòng)、定模行腔錯(cuò)位對(duì)鑄件影響較小,所以分型面如圖黃線C所示,有利于脫模并能保證制品質(zhì)量。
圖6-1 鑄件的二維圖
6.3 壓鑄機(jī)的選擇
6.3.1 臥式冷室壓鑄機(jī)結(jié)構(gòu)
臥式冷室壓鑄機(jī)基本組成如圖6-2所示[11]。
圖6-2 臥式冷室壓鑄機(jī)
1—增壓器;2—蓄能器;3—壓射缸;4—壓射沖頭;5—壓室;6—定座板;7—拉桿;8—?jiǎng)幼澹?—頂出缸;10—曲肘機(jī)構(gòu);11—支承座板;12—模具高度;13—合模缸;14—機(jī)體;15—控制柜;16—電機(jī)及泵
6.3.2 .計(jì)算零件的投影面積
A1=3.14*(642/4+7.52)*2=6784 mm2
澆道系統(tǒng)的投影面積A2=(0.15~0.30)A1 選0.2
A2=0.2*6784=1357 mm2
余料的投影面積A3=3.14*d2/4
選壓室直徑d為?40mm(即沖頭直徑?40mm)
則A3=3.14*402/4=1256 mm2
排溢系統(tǒng)A4=(0.1~0.2)A1 選0.13
則A4=0.13*6784=882 mm2
縱投影面積A= A1+ A2+ A3+ A4
=6784+1357+1256+882
10279 mm2
6.3.3 計(jì)算脹型力,鎖型力,初選壓鑄機(jī)型號(hào)
鑄件是一般鑄件,選曾壓比Pb=40N/mm2
F脹=40*10279=411.16kN
F鎖= F脹/k=411.16/0.85=483.7KN
所以可初選用鎖型力為630KN的J116E型壓鑄機(jī)[12]。
6.3.4 計(jì)算澆入合金液的重量
鑄件凈重G1=50*2=100g,查表[13]鋁合金的液態(tài)密度為p=2.5g/cm3
澆道的重量G2=V2p=13.74*0.8*2.5=27.1
預(yù)料G3 設(shè)余料厚度為30mm
G3=V3p=12.56*3.0*2.5=94.2 g
排溢系統(tǒng)G4設(shè)溢流槽的深度為4mm
G4=V4p=8.82*0.4*2.5=8.8 g
澆入合金的總量G= G1+ G2+ G3+ G4=100+27.1+94.2+8.8=230.1g
6.3.5 壓鑄機(jī)的校核
選J116E時(shí),沖頭直徑?40mm的澆注量為0.5Kg
充滿度?=230.1/500*100/100=46%
通常要求充滿度在40%~75%范圍[14],所以充滿度符合要求。
壓住模具的厚度H為225mm, Hmin+10mm≤H≤Hmax-10mm 也就是(150+10)mm≤225mm≤(350-10)mm,所以模具的厚度符合要求。
壓鑄機(jī)開模后,應(yīng)使壓鑄機(jī)動(dòng)模座板行程(L)大于或等于能取出鑄件的最小距離L取,由于動(dòng)模座板行程L為240mm,取出鑄件的最小距離L取≥L芯+L件+k L芯為型芯的距離,L件為鑄件的距離,K一般取10mm
L取≥17mm+17mm+10mm=44mm,因?yàn)?40mm≥44mm,所以也符合要求
因此以上選J116E符合要求。它的參數(shù)是:最大金屬澆注量0.5kg鋁,壓鑄模厚度150mm-350mm,動(dòng)模座板行程240mm,合模力為630KG,壓射力為90KG,頂出力為52KG,壓室直徑35,45mm,頂出行程60mm,動(dòng)模板尺寸480*480mm,機(jī)器重量3500KG。
6.4 澆注系統(tǒng)的設(shè)計(jì)
6.4.1 澆注位置的確定
鑄件中心有型芯,所以不宜采用中心澆注,易采用側(cè)面澆注,澆注位置選在最大環(huán)形圓柱面得中點(diǎn)位置[15]。澆注系統(tǒng)主要有直澆道、橫澆道、內(nèi)澆口以及余料組成,橫澆道的截面形狀采用扁梯形,內(nèi)澆口為環(huán)型側(cè)澆口[16]。
6.4.2 內(nèi)澆道的尺寸
內(nèi)澆口截面積[17]Ag=k*G1/2=4*1151/2=44
內(nèi)澆道的深度D1=2mm 則寬度C1=44/2=22mm
6.4.3 橫澆道的尺寸
橫澆道是直澆道的末端到內(nèi)澆口前段的鏈接通道。橫澆道的結(jié)構(gòu)形式主要取決于壓鑄件的結(jié)構(gòu)形式和輪廓尺寸,內(nèi)澆口的位置,方向和寬度,以及型腔的分布情況。
橫澆道可分為(1)扇形橫澆道
(2)T形橫澆道
(3)錐形切向橫澆道
(4)圓形橫澆道
設(shè)計(jì)橫澆道的原則(1)橫澆道的截面面積是從直澆道到內(nèi)澆口應(yīng)保持均勻或逐漸縮小,不允許有突然的擴(kuò)大或縮小現(xiàn)象,以免產(chǎn)生渦流。
(2)橫澆道厚度方向應(yīng)平直,當(dāng)采用逐漸縮截面積時(shí),可有方向斜角α,不應(yīng)該設(shè)計(jì)成曲面形狀,以免產(chǎn)生裹氣或流態(tài)不穩(wěn)。
(3)在任何情況下橫澆道截面積都應(yīng)大于內(nèi)澆口截面積;一模多型腔時(shí),主橫澆道截面積應(yīng)大于各分支橫澆道截面積之和。
(4)臥式冷室壓鑄機(jī)的橫澆道應(yīng)處于直澆道的正上方或側(cè)上方,以避免金屬液在壓射前流入橫澆道,其他類型壓鑄機(jī)則無此要求。
綜合考慮選用扇形橫澆道。
D2=(5~8)D1=10mm Ar橫澆道面積
D2= C1Ar1/2 W橫澆道寬度 D2橫澆道深度
W=C2 Ar1/2 C1 C2系數(shù)C1=0.678 C2=1.595
W=13.5 取整為14mm
6.4.4 直澆道尺寸
沖頭直徑d=?40mm 則直澆道的直徑也為40mm
6.4.5 溢流槽的設(shè)計(jì)
參照鑄造手冊(cè):全部的溢流槽的溢流口截面積的總和An應(yīng)等于內(nèi)澆口截面積Ag的60%~70%
An=0.6*44=26.4mm2
設(shè)計(jì)二個(gè)弓形溢流槽,溢流口的截面積為15mm2
R/mm
a/mm
H/mm
h/mm
c/mm
b/mm
B/mm
Fy/cm2
Vy/cm3
10
6
8
1.0
1
15
19.6
3.02
1.48
6.4.6 澆注系統(tǒng)的二維視圖
圖6-3 澆注系統(tǒng)的二維圖
6.5 推桿尺寸計(jì)算
推桿的直徑是有推桿端面在壓鑄件上允許承受的受推力決定的,由參考文獻(xiàn)查得[18],其計(jì)算公式如下
推出力為 F=F1(μ) F1=ap A≥F/n[p]
a—型芯被包緊部位的表面積為13693
p—鑄件對(duì)型芯的包緊力 鋁合金去10~12Mpa 取p=10Mpa
μ—鑄件與型芯的摩擦因子(μ=0.2~0.25) 取μ=0.2
α—型芯成型部位的脫模斜度取15′
n—頂出桿的個(gè)數(shù),n=11
[p] —鋁合金的許用受推力為50MPa
通過計(jì)算得A≥15,本設(shè)計(jì)采用的十一根推桿直徑為6mm的推桿,每個(gè)推桿前端截面積均為28.26mm2。
6.6 排氣、冷卻系統(tǒng)
溢流槽的結(jié)構(gòu)其截面形狀采用半圓形,排氣槽與溢流槽配合,布置在溢流槽后端以加強(qiáng)溢流和排氣效果[19]。排氣槽示意圖
圖6-4 排氣系統(tǒng)的示意圖
6.7 模體設(shè)計(jì)
6.7.1 模體設(shè)計(jì)概述
構(gòu)成模體的結(jié)構(gòu)件主要包括:定模座板、定模套板、動(dòng)模套板、支承板、墊塊、動(dòng)模座板、導(dǎo)柱、導(dǎo)套[20]。
基于本次課題所設(shè)計(jì)的動(dòng)模套版,定模套板尺寸剛度符合需求,故省去支承板,采用現(xiàn)在常用的不通孔模架。
6.7.2 模體尺寸
定模座板:長(zhǎng)460mm,寬250mm,厚25mm;
動(dòng)模座板:長(zhǎng)460mm,寬250mm,厚25mm;
定模套板:長(zhǎng)400mm,寬250mm,厚60mm;
動(dòng)模套板:長(zhǎng)400mm,寬250mm,厚60mm;
墊塊: 長(zhǎng)250mm,寬50mm, 厚80mm;
推板: 長(zhǎng)290mm,寬200mm,厚25mm;
推板支撐板:長(zhǎng)290mm,寬200mm,厚12mm。
6.7.3 材料及熱處理后硬度
導(dǎo)柱,復(fù)位桿采用材料GCr15,熱處理后強(qiáng)度要求為50-55HRC,推桿采用GCr15,熱處理后要求強(qiáng)度為50-55HRC,推板和推板固定板采用45鋼,熱處理要求回火。其他零件的材料選用45鋼,熱處理要求25-32HRC。
7 模具的裝配
利用UG中實(shí)體的相關(guān)性檢驗(yàn)和虛擬裝配技術(shù),進(jìn)行三維實(shí)體裝配,然后按要求在指定的位置剖切,生成三維的模具立體圖和二維的模具工程裝配圖見圖紙。
圖7-1 模具三維立體圖
8 結(jié)論
本次設(shè)計(jì)最后采用不通孔模架,因?yàn)椴煌啄<芸珊?jiǎn)化模具結(jié)構(gòu)和制造工序,節(jié)省材料,模具的剛度和強(qiáng)度較好,比起通孔模架有更大的優(yōu)越性。整個(gè)模架有定模套版、動(dòng)模套版、推板、推板固定板、墊塊、動(dòng)模座板組成。整體尺寸為400×250×245。導(dǎo)柱、復(fù)位桿采用的材料是GCr15,熱處理后強(qiáng)度要求為50~55HRC,推桿采用GCr15,熱處理后要求強(qiáng)度為50~55HRC,推板和推板固定板采用45鋼。推出機(jī)構(gòu)采用11根推桿,鑄件上8根,排溢槽上2根,澆注系統(tǒng)上布置1根,以方便脫出。復(fù)位機(jī)構(gòu)采用4根復(fù)位桿,分別位于推板固定板的4個(gè)頂角,由于整體模具不大,為設(shè)計(jì)加工的簡(jiǎn)便省去推板導(dǎo)柱與導(dǎo)套,利用復(fù)位桿進(jìn)行推板導(dǎo)柱的作用。回模時(shí)通過4根于動(dòng)模座板上的限位釘對(duì)推板進(jìn)行精確的定位。經(jīng)過初選計(jì)算和最終核算,本次設(shè)計(jì)采用J116E臥式冷室壓鑄機(jī),取用40mm的壓室直徑。設(shè)計(jì)的模具采用整體式結(jié)構(gòu),整體式結(jié)構(gòu)成形部分的型腔直接在模板上加工而成,是模塊和型腔構(gòu)成一個(gè)整體。整體式結(jié)構(gòu)的強(qiáng)度高,剛度好,壓鑄件表面光滑平整,模具裝配量較小,外形尺寸較小,可不用進(jìn)行熱處理。
利用UG的CAD/CAM 集成功能,在端蓋壓鑄模設(shè)計(jì)中成功地利用UG的草圖設(shè)計(jì),旋轉(zhuǎn),陣列,倒圓和虛擬裝配等技術(shù)完成了三維建模及模具設(shè)計(jì),為模具設(shè)計(jì)提供了一種新方法,利用UG了強(qiáng)大的圖形處理功能和裝配設(shè)計(jì)能力,以面向裝配的設(shè)計(jì)思想為指導(dǎo)!結(jié)合壓鑄型設(shè)計(jì)的特點(diǎn),并充分考慮到設(shè)計(jì)過程的并行性,縮短了模具的設(shè)計(jì)和制造時(shí)間,提高了壓鑄型設(shè)計(jì)的靈活性,增加了市場(chǎng)競(jìng)爭(zhēng)力。
致謝
本次畢業(yè)設(shè)計(jì)是在王明杰老師的細(xì)心指導(dǎo)下完成的。王老師模具專業(yè)知識(shí)淵博、理論與實(shí)際結(jié)合能力強(qiáng)以及勤奮樸實(shí)的工作精神給學(xué)生留下了極其深刻的印象。在本次畢業(yè)設(shè)計(jì)過程中,王老師嚴(yán)格要求我們,百忙中悉心指導(dǎo)工藝設(shè)計(jì)理論結(jié)合實(shí)踐知識(shí),耐心解說合成過程中的疑難點(diǎn),使我得以順利完成本次設(shè)計(jì)。在論文的寫作過程中,王老師嚴(yán)格按照系畢業(yè)生論文要求,精心指導(dǎo)我論文的寫作,值此論文完成之際,謹(jǐn)向王老師表示崇高的敬意和衷心的感謝!最后在離校之際感謝四年來精心教導(dǎo)我的老師們,祝愿老師們身體健康,工作愉快。
參考文獻(xiàn)
[1]陳金城,翟春泉.快速成長(zhǎng)中的中國壓鑄機(jī)制造業(yè)[J].特種鑄造及有色合金2010(9).
[2]杜巧連,賴振宇,魏建華.壓鑄機(jī)比例節(jié)流閥性能測(cè)試實(shí)驗(yàn)臺(tái)的設(shè)計(jì)[J].機(jī)械制造2008(7).
[3]劉文川.缸體類復(fù)雜鑄型模具設(shè)計(jì)中的幾個(gè)問題[J].機(jī)械制造,2004(02).
[4]王乾廷,徐友干.貼花型輪胎?;▔K精密鑄造[J].模具三維建模技術(shù) ,2005(07).
[5]印飛,王亦新,洪慎章.?dāng)D壓鑄造的應(yīng)用與模具材料[J].機(jī)械工程材料,2000(02).
[6]路陽,李文生,王智平.新型模具鋁青銅合金材料的研制[J].熱加工工藝,2002(03).
[7]崔旭龍.精密鑄造企業(yè)生產(chǎn)過程組織研究及管理信息系統(tǒng)的開發(fā)[M].北京:華大學(xué)機(jī)械工程系, 2001.
[8]陳伯雄.三維設(shè)計(jì)是CAD技術(shù)應(yīng)用的必然趨勢(shì)[J].計(jì)算機(jī)輔助設(shè)計(jì)與制造,2000,(8):11-13..
[9]張冶,洪雪.UG NX三維工程設(shè)計(jì)與渲染教程[M].北京(清華大學(xué)出版社,2004).
[10]洪如瑾.UG NX CAD快速入門指導(dǎo)[M].北京(清華大學(xué)出版社,2003)..
[11]潘曾憲.壓鑄模設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1668.
[12]黃乃瑜.中國模具設(shè)計(jì)大典第5卷 鑄造工藝裝備與壓鑄模設(shè)計(jì).南昌:江西科學(xué)技術(shù)出版社,2003.
[13]陳元芳,鄧明,劉春.摩托車右曲軸箱蓋壓鑄模設(shè)計(jì)[J].特種鑄造及有色合金,2003(增刊):133~134.
[14]張丁非,胡紅軍.基于UG/KF的鎂合金壓鑄模KBE平臺(tái)設(shè)計(jì)和研究[J].熱加工工藝2009(5) .
[15]胡紅軍,楊明波."計(jì)算機(jī)在材料科學(xué)中應(yīng)用"課程教學(xué)設(shè)計(jì)[J].鑄造技術(shù),2007(7) .
[16]王名涌,何昌偉,孫化棟.覆蓋件壓鑄模設(shè)計(jì)[J].模具制造,2005(1)..
[17]李飛.PROCAST鋁合金壓鑄模澆注系統(tǒng)設(shè)計(jì)及充型凝固數(shù)值模擬[J].鑄造技術(shù),2010,31(4).
[18]楊勇.設(shè)計(jì)鋁合金壓鑄模具澆注系統(tǒng)類型的原則[J] .特種鑄造及有色合金,2006,26(8).
[19]MUHIC M,TUSEK J;KOSEl F Thermal fatigue cracking of die-casting dies 2009(03).
[20]KOSEC B Failures of dies for die-casting of aluminium alloys 2008(01).
21
CHrNESE JOURNAL OF MECHANICAL ENGINEElUNG 、,ol-23,No5,2010 。547 DOI:103901CJME201005547,available online at wwwcjmenetcorn;wwwcjmenetcomcn Design and Verification of an Auxiliary System for High Vacuum Die Casting GE Xiaohon912一,HUANG Hongwul,LI Hui2,and LIU Yadanl 1 School ofPhysics and MechanwalElectrical Engineering,Xiamen University,Xiamen 361005China 2 Institute ofMaterial Processing and DieMould Integrated Technology,Xiamen University ofTechnology, Xiamen 36102幺China Received January26,2010;revisedAugustl8,2010;acceptedAugust25,2010;published electronicallyAugust26,2010 Abstract:Vacuum die casting is the optimal method to produce high quality aluminum alloy componentsAt present,there arc still very few systematic studies on Vacllum die casting theory and equipment designOn the basis of the existing theories of the vacuum die casting pumping and venting systemsa simplified model is established in this researchThe model has an aggregate unit consisted of vacuum pump+buffer tank”and a cylindrical container(including the shot sleeve,cavity and exhaust channel)The theoretical analysis is carried out between the cavity pressure and the pumping time under different volume modelsAn auxiliary system for high vacuunl die casting is designed based on the above analysisThis system is composed of a vacuum control machine and a new vacuum stop valveThe machine has a human-computer control mode with“programmable logic controller(PLC)+touch SClealand a real-time monitoring function of vacuunl degree for buffer tank and die cavityThe vacuum stop valve with the“compressed gas+ piston rod+labyrinth groove”structure can realize the function of whole-process vacuum ventingThe henri,system shows great advantages on vacuuming the cavity with a much faster speed by making tests oil all existing die casting mold and a 250 t die casting machineA die cavity pressure less than 10 kPa can be reached within 08 s in the experiment and the porosity ofcastings can be greatly decreasedThe systematic studies on vacuum die casting theory and equipment have a great guiding significance for high vacuuin die casting,and call also be applied to other high vacuum forming in related theoretical and practical research Key words:vacuum die casting,pumping model,high vacuum,vacIllmll stop valve,auxiliary system 1 Introduction Higll vacuum die casting technology is a special die casting process during which a cavity pressure less than 10 kPa call be obtainedThis technology can reduce or eliminate the porosity in die castings,with the air entrainment content being merely 1-3 mL per 1 00 gThe obtained castings can be used for further processing such as heat treatment and welding。etctl-21The key technology of lligh vacuunl die casting is to design a highsensitive vacuum pumping systemThe difficulty lies in establishing a modeling of pumping processSome scholars have studied on the theoretical model or practical application in this aspect BAR-M匝IlL et alt3-41studied the air venting of die casting and the ph)rsical modeling of vacuunl pumping processThey believed there was a critical vent area during the die casting processWhca the effective vent area of a vent valve was smaller than the critical area,the venting process was insufficienthence a lot of gases were involved in the liquid metalWhen the effective vent area was larger, the liquid metal was overflowed easilyNOURIBORUJE一 Corresponding authorEmail:xmlggxh163corn This project is supported by Fujian Provincial Natural Science Foundation of China(Grant No2007J0 1 70),and Xiamen Municipal Natural Science Foundation ofChina(Grant No3502220093034) RDIet alt51built a transient model for the residual air mass in the die cavity during the injection processThev considered the influence of the molten metal viscosity temperature,injection velocity and friction factor,and thus improved the numerical simulation calculation method in this fieldHERNANDEZet al【improved the model of BARM【EIR et a1and took into account such unsteady factors as friction and air flow variation during vacuum pumping1nhis improved physical model was suitable for both conventional die casting and vacuum die casting There were many other studies on the die casting venting and vacuum die casting pumping internationally,but most of them stayed at the theoretical level and were mostly numerical simulations for the venting process HUet al【卜of Tsinghua University,China,carried out the theoretical calculation and experimental study of the decline of vacuum pressure in the cavity pumped directly by a vacuunl pumpThey compared a theoretical curve with a measured curve of the pressure in the cavityOnly when the time of vacuum pumping exceeded 25 san ideal cavity vacuum pressure less than l 0 kPa could be obtailled 、)liA Net alL。厶刈from Huazhong University of Science and Technology,China,independently developed a key technology related to high vacuum die casting based on minimum filling time(MFT)methodThey designed an auxiliary system with a bufrer tank that the mechanical 萬方數(shù)據(jù) 548 GE Xiaohong,et al:Design and Verification ofan Auxiliary System for High Vacuum Die Casting valve could be closed by the impact of liquid metal flow This system could decrease the pressllre of cavity to 10 kPa within 1 s Based on the current Iiterature,few studies provide theoretically sound analysis and practical sound design for a vacuum die casting system with a buffer tankThis paper is to carry out theoretical research and calculation analysis of the high vacuum pumping system model with a buffer tank,to study the relationship between pressure in die cavity and the pumping time,and to develop a high vacuum die casting auxiliary system which Call satisfythe high vacuunl experiment requirements 2 Theoretical Model of Pumping System with a Buffer Tank The vacuum pumping scheme with a buffer tank is shown in Fig1【4】A large buffer tank,as a vacuum source, is added to extract the gas out of the cavity between the vacuum pump and the mouldThe gas in the buffer tank is drawn out unceasingly by the vacuum pump Fig1Scheme ofvacuum pumpkng system with a buffer tank A simplified model is given in Fig2 for the theoretical calculation of hi【曲vacuum venting based on the above scheme必n is the Math number at duct entrance,Jjlt is the Mach number at duct exit,and re(t)is the number of moles of gas in die cavity vacutlrtl entrance Fig2Theoretical calculation model for air venting In this model。the unfilled shot sleeve。the runner and the die cavity are combined and regarded as a cylindrical container fcalled the cylinder)【jJGases are vented through the duct to the buffer tank功e main resistance to gas flow is in the ductThe following assumptions about this model are made for the theoretical calculation: (1)AU gases are ideal gases (2)1nhe venting period is very short,the gases temperatu- re is at 300 k and the heat transfer of gases is not considered (3)111e effect of gases leakage on the venting process is neglected (4)The volume of vacuum valve duct is sinail compared to the gas duct,thus can be negligible According to the model established for the venting process in high vacuum die casting,the following formulas can be established to relate the gas pressure in the cavity to the pumping timeIn performing the calculations,and 朋rout at the duct entrance and exit can be obtained by solving Eqs(1)一(3)3一10l as follows: 警=愕L一陪1, m 篇P=(+盟2 M二廠老。(f) I ”J M。 ,+等M二 +竿帆2 t+l II (2) (3) Within the time interval At,the gases mass Am flowing from the cylinder through the vent to the outside can be obtained by Eq(4)t5-6: Am=pgAAt=PoM,(-bi+等M:產(chǎn)觸 The cavity pressures po(t)and p“力can be obtained by Eqs(5),(6),respectively: (5) (6) where the dimensionless quantity 4fLD is the resistance coefficient in the duct,usually taking 3 to 7p“f)is the pressure at duct exit,po(t)is the pressure in die cavity,k is the specific heat ratio of air,Am is the number of moles of gas entering the duct in unit timeP is the air density,R is the molar gas constant“is the gas velocity at the vent entrance,A=n(D2)2 is the vent cross-sectional are41,K is the cylinder volume,瑪is the buffer tank volume,and K is the duct volume,V4=“+ The gas duct has diameter of 20 mill and length of 3 m The buffer tank is selected with l 50 LThe vacuum pump with the pumping speed of 8 Ls is to be used,and the bufrer tank is pumped to have an initial pressure of 08 kPa r r一 豎 堅(jiān)守半 一 一 m一 陋 II =、,、J f f,L,L 風(fēng) 風(fēng) 萬方數(shù)據(jù) CHINESE JOURNAL OF MECHANICAL ENGEERING 549 Table presents the values for the calculation TableValues for the initial calculation conditions Initial condition Value Cylinder volume VIL dllct Di8n柵Dmm Length Lm Pressure at 0 spo(O)kPa Pressure in final po(t)kPa Pressure at 0 sp,(O)kPa Specific heat ratio ofairK Resistance coefficient 4fLIrt o5,10,15 20 4 1013 lO 8 141 In the range of37here taking the value of5 Vacuum tank volume圪L 150 Duct volume nL 94 Pumping speed of the vacuulll pump 。 S(L5-1) 6 Molar gas constant R 83 I 4 Ambient temperature rK 300 Cylinder(shot sleeverunner and die cavity)with the volumes of 05 L10 L and 15 L are taken for the calculationne calculation results are as shown in Fig3 Whell=15 L,it only takes 073 s to decrease the pressure in the die cavity to 9885 kPa by pumping and the lowest pressure can reach 8974 kPataking only 083 s jd 瓷 善 躥 蘭 營(yíng) 竺 凸 Fig3Relation curves between the die cavity pressure and time The calculation equations for the above theoretical model are established without considering the unceasing evacuation of the vacuum tank by the vacuum pumpThe time of pumping the buffer tank call be estimated by Eqs (7),(8)1l】: 一咕g營(yíng), v=巧+ (7) (8) where t is the pumping time,昂is the nominal pumping speed,V is the volume of the target container,n is the volume of the buffer tank,坎is the volume of the pumping duct,pi is the initial pressure in the target container,P is the target pressure in the target container, and the dimensionless quantity K is the correction cocfficient, taking l herein】 111e time to pump the buffer tank to 08 kPa in advance is calculated as follows: ,=23量,q喜gP歹l一。一,、-,、150i+94。x lg10000063 s (9)l口一R V-9 8 000 、7 There is a relatively long time not necessarily to be of vacuum before the liquid metal filling the cavityThis time can be used to preevacuate the vacuum tank 3 Design and Realization of a High Vacuum Auxiliary System On the basis of the above theoretical modela high vacuum die casting auxiliary system is designed with following core parts such as the control systemvaounl valve and pneumatic systemThe design and realization processes will be introduced briefly in the following sections 31 Design and realization of the control system The control system adopts the industrial control mode of “PLC+touch screen”It can perform realtime monitoring of the vacuum pump,various solenoid valves,buffer tank, vacuum valve and die cavityThe schematic diagram and photo of the control system are given in Fig4The operation interfaces are given in Fig5 32 Design of vacuum valve and pneumatic control To achieve the best vacuum die casting result,it must be guaranteed that high vacuum level in the die cavity can be maintained until the cavity is completely filled with liquid metalThe vacuum pumping charmel should be closed at the moment that the filling endsTherefore。the vacuum valve working mode is the key to realize this processThe developed vacuum valve has different structure from the existing onestl2-19A mode of“compressed gas+piston rod J1abyrinth grooveis originally created and the inertial impact of the liquid metal is used to close the vent channelwhose response time is only 15 msTherefore the wholeprocess vacuum ventingis realized in die casting Finally,the automatic reset of the vacuum valve is achieved with the assistance of the compressed gasThe structure and photos of the vacuum valve are given in Fig6The vacuum valve can also be controlled by the compressed air The circuit diagram of pneumatic control of vacuum valve isgiven inFig7 萬方數(shù)據(jù) 550 GE Xiaohong,et al:Design and Verification ofan Auxiliary System for High Vacuum Die Casting (a)Control system diagram I,2-Programmable controller;3-Touch screen; 4,5-Solenoid valve;6-Pressure transmitier; 7-Pressure regulating valve (b)Control system object Fig4Schematic diagram and object ofthe control system Fig5Operation interfaces ofthe control system (a)Inlemal structure ofthe vacuLim valre module Outside configuration andphoto ofthe vacuumvalve Fig6Structure and photos of the vacuum valve Fig7Circuit diagram ofthe pneumatic control ofthe vacuum valve 1,5-22 way pilot-operated solenoid valve; 2,632Way pilotoperated solenoid valve; 3-32way direct-operated solenoid valve; 4-22way directoperated solenoid valve; 7,8一Pressure regulating valve; 9一Pressure transmitter;10一Filter 4 Verification and Analysis of the Vacuum Pumping with the High Vacuum Auxiliary System 41 Experimental equipment and method ADCl2 alloy is used as the test material and the vacuum 萬方數(shù)據(jù) CHINESE JoURNAL OF MECHANICAL ENGNEERING 551 die casting mould is designed for an automobile part(a bar), whose mass is 104 kg containing casting itself,the gating system and the ventAs shown in Fig8(a),the developed vacuum valve and mould are installed on the die casting machine,F(xiàn)ig8(b)shows the bar produced by this system Fig8Experiment ofvacuum die casting A ccrtain amount of ADC 1 2 iS melted to 953 Krefined for 1 5 rain by blowing argonand stood still for 1 0 min for thermal insulation castingThe mould iS heated to a preheating temperature 523 K with all electric heating rod The vacuum pressure in the buffer tank iS set to 1 0 kPa The vacuum levels following time in the cavity are shown in Fig9One curve is obtained by theoretical calculation and the other by measuring in the experiment processne two curves have the salne trend in the pressure drop section 芒 暮 l 璺 魯 套 者 Pumping time ts Fig9Measurement and theoretical calculation resuk 42 Observation of porosity castings The fatal defect of aluminum alloy die castings iS the porosityBy sampling,the X-ray inspection of the bars in connecting part without heat treatment indicates that the porosity of castings produced by conventional die casting is 1 00And the gas holes are widely distributed,whereas barely any gas hole can be seen in the castings by high vacuum die castingThe typical distribution of the gas holes are as shown in Fig1 0Thewhole-process vacuunl of this system iS synchronized with the iniectionachieving the whole-process venting,and satisfying the requirement of low porosity to the greatest extent Fig10Xray pictures ofcastings produced by conventional and vacuum die casting 5 Conclusions (1)The cavity venting process with a buffer tank in high vacuum die casting iS calculated and analyzedOn the basis of the specific parameters selected for the developed high Vacuum die casting auxiliary systemthe theoretical curves of cavity venting with different volumes are plotted ResulB show that,for aluminum castings less than 4 kg,the cavity pressure Can be decreased to l 0 kPa within 08 S theoretically using the vacuum pumping with a buffer tank of 1 50 LTo a certain degreeit reflects the vacuum pressure variation仃end in the cavity (2)A high vacuum die casting auxiliary system is developed based on the above calculation and analysis This system has a touch control interface with advantages of the simplicity and fast responseand a mechanical 萬方數(shù)據(jù) 。552。 一鯉Xiaohong,et al:Design and Verification ofan Auxiliary System for High Vacuum Die Casting vaL:Illlnl valve that call achieve vacuunl venting during the whole process with the response time of only 15 ms (3)The higIl vacuunl die casting auxiliary system has been used for trial production of ADCl2 alloy barsThe porosity decreases significantly compared to the conventional die casting technique (4)The systematic studies on vacuunl die casting theory and equipment have a great guiding significance for high vacutlnl die casting,and can also be applied to other hiigh vacuum forming such as vacuulTl injection References 【l】ZHAO Yunyun,WAN Li,PAN Huan,et a1Design and application of the vo,ctlllll,!shut-off valve and vacullln system for high vacuulll die castingCThe 12th National Special CastingNonferrous Alloys Annual Conference,Fuzhou,China,July 263 12008: 451454(in Chinese、 【2】ZHAO Ytmyun,WAN Li,PAN Huan,et a1Development and application of high vacuum die casting in aluminum alloyJ Special CastingNonferrous Alloys,2008,28(11):858-861(in Chinese) 【3】BAR-MEIR G,ECKERT E R G,GOLDSTEIN R JAir venting in pressure die castingJFluids Eng,1997,1 19(2):473_476 【4】BAR-MEIR G,ECKERT E R G,GOLDSTEIN R JA model of vacumpumpingJ爿m紀(jì)Z ManufScfEng,1996,118(2):259- 265 【5】NOURI-BORUJERDI A,GOLDAK J AModeling of air venting in pressure die casting processJASMEManuf SciEng,2004, 12“3):577-581 【6】HERNANDEZ JLOPEZ JFAURA FInfluence of unsteady effects on air venting in pressure die castingJASME Trans,2001, 1 23(4):884-892 【7】HU Bo,ONG Shoumei,MASAYAKI M,et a1Calculation aad experiment oll cavity vacuum p托ssurc in vBom die casting processJChina Foundry,2007,56(3):258-261 【8】HU 13,o,oNG Shoumei,MASAYAKI M,et a1Comparison experiments on evacuating capability of a high vacum valve and a zig-zag valve in vacBunl die casting process叨China Foundry, 2006,55(4):355-359 【9】WAN Li,PAN Huan,LUO JirongApplication and development trends ofhiigh vacuull die casting process and die casting aluminum alloys with high strength and ductilityJSpecial Casting Nonferrous Alloys,2007,27(12):939_942(in Chinese) 【i0WANG L HMathematical modelling of air evacuation in die casting proc6絡(luò)$via CASTvac and other venting devicesJ International Journal of Cast Metals Research,2007,20(4): 19l197 【1l】DAO DaanVacuum desgn manuaMBeijing:National Defense 【12】 【13l 【14】 【15】 【16】 【17 【l 8】 【19】 Industry Press2004(in Chinese) IWAMOTO TermyuZI NinngyokuVacuum control equipment and VacBLIm die casting method of die casting machine:China-CN 1709613【P】20051221 KAToU KoumeiMethod to eontroI the vacllunl level in vaGuunl die casting and vacuum control to accomplish this mahod:China, CN 115092lfPI1994一_0604 L1 YufengDie casting die designed and made by Japan-die casting method+local pressure pinJEn舒ne Fuel System,2000,12(4): 2肚24 WISER JA valve device used in die casting venting:Chi眠CN 1095000P1994一l l16 HODLER FDie casting 1095653P1994-1 1-30 LI Q BVacuum valve 25 1 8623P200210-30 module with rant valve:China,CN of die casting machine:Chin亂CN GU Y W,L1 J XVacuum valve sllaletttre of a die casting machine: China,CN 2301318P11998-12-23 ZHAO Y Y,WAN L,PAN HVacuum stop valve used for high vacuum die casting:China,CN 201061824P2008-05-21 Biographical notes GE Xiaohong。bom in 1964is currently a Phi)candidate in School of Physics and MechanicalInstitute of Material Processing and Die ECKERT E R G;GOLDSTEIN R J Air venting in pressure die casting外文期刊 1997(02) 2.ZHAO Yunyun;WAN Li;PAN Huan Development and application of high vacuum die casting in aluminum alloy期刊論文-Special Casting PAN Huan;LUO Jirong Application and development trends of high vacuum die casting process and die casting aluminum alloys with high strength and ductility期刊論文-Special Casting XIONG Shoumei;MASAYAKI M Comparison experiments on evacuating capability of a high vacuum valve and a zig-zag valve in vacuum die casting process期刊論文-China Foundry 2006(04) 5.HU Bo;XIONG Shoumei;MASAYAKI M Calculation and experiment on cavity vacuum pressure in vacuum die casting process期刊論文-China Foundry 2007(03) 6.HERNANDEZ J;LOPEZ J;FAURA F Influence of unsteady effects on air venting in pressure die casting 外文期刊 2001(04) 7.NOURI-BORUJERDI A;GOLDAK J A Modeling of air venting in pressure die casting process外文期刊 2004(03) 8.BAR-MEIR G;ECKERT E R G;GOLDSTEIN R J A model of vacuum pumping外文期刊 1996(02) 9.ZHAO Yunyun;WAN Li;PAN Huan Design and application of the vacuum shut-off valve and vacuum system for high vacuum die casting 2008 10.ZHAO Y Y;WAN L;PAN H Vacuum stop valve used for high vacuum die casting 2008 11.GU Y W;LI J X Vacuu
收藏