初中數學二次函數知識點整理.doc
《初中數學二次函數知識點整理.doc》由會員分享,可在線閱讀,更多相關《初中數學二次函數知識點整理.doc(24頁珍藏版)》請在裝配圖網上搜索。
蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈膅芄薅肅莁薃薄螃膄葿薃羅荿蒅薃肈節(jié)莁薂膀肅蝕薁袀芀薆薀羂肅蒂蕿肄羋莈蚈螄肁芄蚇袆芇薂蚇聿肀薈蚆膁蒞蒄蚅袁膈莀蚄羃莃芆蚃肅膆薅螞螅莂蒁螁袇膄莇螁罿莀芃螀膂膃蟻蝿袁肆薇螈羄芁蒃螇肆肄荿螆螆艿芅螅袈肂薄裊羀羋蒀襖肅肀莆袃螂芆莂袂羅腿蟻袁肇莄薆袀腿膇蒂衿衿莂莈蒆羈羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿螁袂芀蒈袃肇膆蕆蚃袀膂蒆螅膅肈蒅袇羈莇蒄薇膄芃蒃蠆羆腿薃螂膂肅薂襖羅莃薁薃螈荿薀螆羃芅蕿袈袆膁薈薈肁肇薇蝕襖莆薇螂肀節(jié)蚆裊袂膈蚅薄肈肄蚄蚇袁蒃蚃衿肆荿螞羈罿芅蟻蟻膄膀羋螃羇肆芇袆膃蒞莆薅羆芁蒞蚇膁膇蒞螀羄肅莄羂螇蒂莃螞肂莈莂螄裊芄莁袆肀膀莀薆袃肆葿蚈聿莄葿 初中數學二次函數知識點整理 1.定義:一般地,如果是常數,,那么叫做的二次函數. 2.二次函數的性質 (1)拋物線的頂點是坐標原點,對稱軸是軸. (2)函數的圖像與的符號關系. ①當時拋物線開口向上頂點為其最低點; ②當時拋物線開口向下頂點為其最高點. (3)頂點是坐標原點,對稱軸是軸的拋物線的解析式形式為. 3.二次函數 的圖像是對稱軸平行于(包括重合)軸的拋物線. 4.二次函數用配方法可化成:的形式,其中. 5.二次函數由特殊到一般,可分為以下幾種形式:①;②;③;④;⑤. 6.拋物線的三要素:開口方向、對稱軸、頂點. ①的符號決定拋物線的開口方向:當時,開口向上;當時,開口向下; 相等,拋物線的開口大小、形狀相同. ②平行于軸(或重合)的直線記作.特別地,軸記作直線. 7.頂點決定拋物線的位置.幾個不同的二次函數,如果二次項系數相同,那么拋物線的開口方向、開口大小完全相同,只是頂點的位置不同. 8.求拋物線的頂點、對稱軸的方法(1)公式法:,∴頂點是,對稱軸是直線. (2)配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線. (3)運用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點是頂點. 用配方法求得的頂點,再用公式法或對稱性進行驗證,才能做到萬無一失. 9.拋物線中,的作用 (1)決定開口方向及開口大小,這與中的完全一樣. (2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線 ,故:①時,對稱軸為軸;②(即、同號)時,對稱軸在軸左側;③(即、異號)時,對稱軸在軸右側. (3)的大小決定拋物線與軸交點的位置. 當時,,∴拋物線與軸有且只有一個交點(0,): ①,拋物線經過原點; ②,與軸交于正半軸;③,與軸交于負半軸. 以上三點中,當結論和條件互換時,仍成立.如拋物線的對稱軸在軸右側,則 . 10.幾種特殊的二次函數的圖像特征如下: 函數解析式 開口方向 對稱軸 頂點坐標 當時 開口向上 當時 開口向下 (軸) (0,0) (軸) (0, ) (,0) (,) () 11.用待定系數法求二次函數的解析式 (1)一般式:.已知圖像上三點或三對、的值,通常選擇一般式. (2)頂點式:.已知圖像的頂點或對稱軸,通常選擇頂點式. (3)交點式:已知圖像與軸的交點坐標、,通常選用交點式:. 12.直線與拋物線的交點 (1)軸與拋物線得交點為(0, ). (2)與軸平行的直線與拋物線有且只有一個交點(,). (3)拋物線與軸的交點 二次函數的圖像與軸的兩個交點的橫坐標、,是對應一元二次方程的兩個實數根.拋物線與軸的交點情況可以由對應的一元二次方程的根的判別式判定: ①有兩個交點拋物線與軸相交; ②有一個交點(頂點在軸上)拋物線與軸相切; ③沒有交點拋物線與軸相離. (4)平行于軸的直線與拋物線的交點 同(3)一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的縱坐標相等,設縱坐標為,則橫坐標是的兩個實數根. (5)一次函數的圖像與二次函數的圖像的交點,由方程組 的解的數目來確定:①方程組有兩組不同的解時與有兩個交點; ②方程組只有一組解時與只有一個交點;③方程組無解時與沒有交點. (6)拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,由于、是方程的兩個根,故 一次函數與反比例函數 考點一、平面直角坐標系 (3分) 1、平面直角坐標系 在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。 其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。 為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。 注意:x軸和y軸上的點,不屬于任何象限。 2、點的坐標的概念 點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。 考點二、不同位置的點的坐標的特征 (3分) 1、各象限內點的坐標的特征 點P(x,y)在第一象限 點P(x,y)在第二象限 點P(x,y)在第三象限 點P(x,y)在第四象限 2、坐標軸上的點的特征 點P(x,y)在x軸上,x為任意實數 點P(x,y)在y軸上,y為任意實數 點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0) 3、兩條坐標軸夾角平分線上點的坐標的特征 點P(x,y)在第一、三象限夾角平分線上x與y相等 點P(x,y)在第二、四象限夾角平分線上x與y互為相反數 4、和坐標軸平行的直線上點的坐標的特征 位于平行于x軸的直線上的各點的縱坐標相同。 位于平行于y軸的直線上的各點的橫坐標相同。 5、關于x軸、y軸或遠點對稱的點的坐標的特征 點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數 點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數 點P與點p’關于原點對稱橫、縱坐標均互為相反數 6、點到坐標軸及原點的距離 點P(x,y)到坐標軸及原點的距離: (1)點P(x,y)到x軸的距離等于 (2)點P(x,y)到y(tǒng)軸的距離等于 (3)點P(x,y)到原點的距離等于 考點三、函數及其相關概念 (3~8分) 1、變量與常量 在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。 一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。 2、函數解析式 用來表示函數關系的數學式子叫做函數解析式或函數關系式。 使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。 3、函數的三種表示法及其優(yōu)缺點 (1)解析法 兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。 (2)列表法 把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。 (3)圖像法 用圖像表示函數關系的方法叫做圖像法。 4、由函數解析式畫其圖像的一般步驟 (1)列表:列表給出自變量與函數的一些對應值 (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點 (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。 考點四、正比例函數和一次函數 (3~10分) 1、正比例函數和一次函數的概念 一般地,如果(k,b是常數,k0),那么y叫做x的一次函數。 特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。 2、一次函數的圖像 所有一次函數的圖像都是一條直線 3、一次函數、正比例函數圖像的主要特征:一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。 k的符號 b的符號 函數圖像 圖像特征 k>0 b>0 y 0 x 圖像經過一、二、三象限,y隨x的增大而增大。 b<0 y 0 x 圖像經過一、三、四象限,y隨x的增大而增大。 K<0 b>0 y 0 x 圖像經過一、二、四象限,y隨x的增大而減小 b<0 y 0 x 圖像經過二、三、四象限,y隨x的增大而減小。 注:當b=0時,一次函數變?yōu)檎壤瘮?,正比例函數是一次函數的特例? 4、正比例函數的性質,,一般地,正比例函數有下列性質: (1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大; (2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。 5、一次函數的性質,,一般地,一次函數有下列性質: (1)當k>0時,y隨x的增大而增大 (2)當k<0時,y隨x的增大而減小 6、正比例函數和一次函數解析式的確定 確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。 考點五、反比例函數 (3~10分) 1、反比例函數的概念 一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。 2、反比例函數的圖像 反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數中自變量x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。 3、反比例函數的性質 反比例函數 k的符號 k>0 k<0 圖像 y O x y O x 性質 ①x的取值范圍是x0, y的取值范圍是y0; ②當k>0時,函數圖像的兩個分支分別 在第一、三象限。在每個象限內,y 隨x 的增大而減小。 ①x的取值范圍是x0, y的取值范圍是y0; ②當k<0時,函數圖像的兩個分支分別 在第二、四象限。在每個象限內,y 隨x 的增大而增大。 4、反比例函數解析式的確定 確定及誒是的方法仍是待定系數法。由于在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。 5、反比例函數中反比例系數的幾何意義 如下圖,過反比例函數圖像上任一點P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PMPN=。 。 二次函數 考點一、二次函數的概念和圖像 (3~8分) 1、二次函數的概念 一般地,如果,那么y叫做x 的二次函數。 叫做二次函數的一般式。 2、二次函數的圖像 二次函數的圖像是一條關于對稱的曲線,這條曲線叫拋物線。 拋物線的主要特征: ①有開口方向;②有對稱軸;③有頂點。 3、二次函數圖像的畫法 五點法: (1)先根據函數解析式,求出頂點坐標,在平面直角坐標系中描出頂點M,并用虛線畫出對稱軸 (2)求拋物線與坐標軸的交點: 當拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數的圖像。 當拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數的圖像。 考點二、二次函數的解析式 (10~16分) 二次函數的解析式有三種形式: (1)一般式: (2)頂點式: (3)當拋物線與x軸有交點時,即對應二次好方程有實根和存在時,根據二次三項式的分解因式,二次函數可轉化為兩根式。如果沒有交點,則不能這樣表示。 考點三、二次函數的最值 (10分)如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當時,。 如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內,若在此范圍內,則當x=時,;若不在此范圍內,則需要考慮函數在范圍內的增減性,如果在此范圍內,y隨x的增大而增大,則當時,,當時,;如果在此范圍內,y隨x的增大而減小,則當時,,當時,。 考點四、二次函數的性質 (6~14分) 1、二次函數的性質 函數 二次函數 圖像 a>0 a<0 y 0 x y 0 x 性質 (1)拋物線開口向上,并向上無限延伸; (2)對稱軸是x=,頂點坐標是(,); (3)在對稱軸的左側,即當x<時,y隨x的增大而減??;在對稱軸的右側,即當x>時,y隨x的增大而增大,簡記左減右增; (4)拋物線有最低點,當x=時,y有最小值, (1)拋物線開口向下,并向下無限延伸; (2)對稱軸是x=,頂點坐標是(,); (3)在對稱軸的左側,即當x<時,y隨x的增大而增大;在對稱軸的右側,即當x>時,y隨x的增大而減小,簡記左增右減; (4)拋物線有最高點,當x=時,y有最大值, 2、二次函數中,的含義:表示開口方向:>0時,拋物線開口向上,,, <0時,拋物線開口向下 與對稱軸有關:對稱軸為x= 表示拋物線與y軸的交點坐標:(0,) 3、二次函數與一元二次方程的關系 一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標。 因此一元二次方程中的,在二次函數中表示圖像與x軸是否有交點。 當>0時,圖像與x軸有兩個交點; 當=0時,圖像與x軸有一個交點; 當<0時,圖像與x軸沒有交點。 補充: 1、兩點間距離公式(當遇到沒有思路的題時,可用此方法拓展思路,以尋求解題方法) y 如圖:點A坐標為(x1,y1)點B坐標為(x2,y2) 則AB間的距離,即線段AB的長度為 A 0 x B 2、函數平移規(guī)律(中考試題中,只占3分,但掌握這個知識點,對提高答題速度有很大幫助,可以大大節(jié)省做題的時間) 3、直線斜率: b為直線在y軸上的截距 4、直線方程: 一般兩點斜截距 1,一般 一般 直線方程 ax+by+c=0 2,兩點 由直線上兩點確定的直線的兩點式方程,簡稱兩點式: --最最常用,記牢 3,點斜 知道一點與斜率 4,斜截 斜截式方程,簡稱斜截式: y=kx+b(k≠0) 5 ,截距 由直線在軸和軸上的截距確定的直線的截距 式方程,簡稱截距式: 記牢可大幅提高運算速度 5、 設兩條直線分別為,: : 若,則有且。 若 6、 點P(x0,y0)到直線y=kx+b(即:kx-y+b=0) 的距離: 對于點P(x0,y0)到直線滴一般式方程 ax+by+c=0 滴距離有 常用記牢 中考點擊 考點分析: 內容 要求 1、函數的概念和平面直角坐標系中某些點的坐標特點 Ⅰ 2、自變量與函數之間的變化關系及圖像的識別,理解圖像與變量的關系 Ⅰ 3、一次函數的概念和圖像 Ⅰ 4、一次函數的增減性、象限分布情況,會作圖 Ⅱ 5、反比例函數的概念、圖像特征,以及在實際生活中的應用 Ⅱ 6、二次函數的概念和性質,在實際情景中理解二次函數的意義,會利用二次函數刻畫實際問題中變量之間的關系并能解決實際生活問題 Ⅱ 命題預測:函數是數形結合的重要體現,是每年中考的必考內容,函數的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標系等,一般占2%左右.一次函數與一次方程有緊密地聯(lián)系,是中考必考內容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右.反比例函數的圖像和性質的考查常以客觀題形式出現,要關注反比例函數與實際問題的聯(lián)系,突出應用價值,3—6分;二次函數是初中數學的一個十分重要的內容,是中考的熱點,多以壓軸題出現在試卷中.要求:能通過對實際問題情景分析確定二次函數的表達式,并體會二次函數的意義;會用描點法畫二次函數圖像,能叢圖像上分析二次函數的性質;會根據公式確定圖像的頂點、開口方向和對稱軸,并能解決實際問題.會求一元二次方程的近似值. 分析近年中考,尤其是課改實驗區(qū)的試題,預計2007年除了繼續(xù)考查自變量的取值范圍及自變量與因變量之間的變化圖像,一次函數的圖像和性質,在實際問題中考查對反比例函數的概念及性質的理解.同時將注重考查二次函數,特別是二次函數的在實際生活中應用. 初中數學助記口訣(函數部分) 特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。 對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號?! ? 自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行?! ? 函數圖像的移動規(guī)律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“同左上加,異右下減”?! ? 一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。 二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換?!? 反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊?! ? 正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵?! ? 反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換?! ? 二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。 1. 一元一次不等式解題的一般步驟: 去分母、去括號,移項時候要變號; 同類項、合并好,再把系數來除掉; 兩邊除(以)負數時,不等號改向別忘了。 2. 特殊點坐標特征: 坐標平面點(x,y),橫在前來縱在后; (+,+),(-,+),(-,-)和(+,-),四個象限分前后; X軸上y為0,x為0在Y軸。 3. 平行某軸的直線: 平行某軸的直線,點的坐標有講究, 直線平行X軸,縱坐標相等橫不同; 直線平行于Y軸,點的橫坐標仍照舊。 4. 對稱點坐標: 對稱點坐標要記牢,相反數位置莫混淆, X軸對稱y相反, Y軸對稱,x前面添負號; 原點對稱最好記,橫縱坐標變符號。 5. 自變量的取值范圍: 分式分母不為零,偶次根下負不行; 零次冪底數不為零,整式、奇次根全能行。 6. 函數圖像的移動規(guī)律: 若把一次函數解析式寫成y=k(x+0)+b, 二次函數的解析式寫成y=a(x+h)2+k的形式, 則用下面后的口訣: “左右平移在括號,上下平移在末稍, 左正右負須牢記,上正下負錯不了”。 7. 一次函數圖像與性質口訣: 一次函數是直線,圖像經過仨象限; 正比例函數更簡單,經過原點一直線; 兩個系數k與b,作用之大莫小看, k是斜率定夾角,b與Y軸來相見, k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反; k的絕對值越大,線離橫軸就越遠。 8. 二次函數圖像與性質口訣: 二次函數拋物線,圖象對稱是關鍵; 開口、頂點和交點,它們確定圖象限; 開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換。 9. 反比例函數圖像與性質口訣: 反比例函數有特點,雙曲線相背離的遠; k為正,圖在一、三(象)限;k為負,圖在二、四(象)限; 圖在一、三函數減,兩個分支分別減;圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。 函數學習口決:正比例函數是直線,圖象一定過原點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵; 反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換; 二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。 10. 求定義域: 求定義域有講究,四項原則須留意。 負數不能開平方,分母為零無意義。 指是分數底正數,數零沒有零次冪。 限制條件不唯一,滿足多個不等式。 求定義域要過關,四項原則須注意。 負數不能開平方,分母為零無意義。 分數指數底正數,數零沒有零次冪。 限制條件不唯一,不等式組求解集- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 初中 數學 二次 函數 知識點 整理
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-7916971.html