2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用課后訓(xùn)練 文.doc
《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用課后訓(xùn)練 文.doc》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用課后訓(xùn)練 文.doc(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第二講 數(shù)列的綜合應(yīng)用 一、選擇題 1.已知數(shù)列{an}滿足a1=5,anan+1=2n,則=( ) A.2 B.4 C.5 D. 解析:因?yàn)椋剑剑?2,所以令n=3,得=22=4,故選B. 答案:B 2.在數(shù)列{an}中,a1=1,a2=2,an+2-an=1+(-1)n,那么S100的值為( ) A.2 500 B.2 600 C.2 700 D.2 800 解析:當(dāng)n為奇數(shù)時,an+2-an=0?an=1, 當(dāng)n為偶數(shù)時,an+2-an=2?an=n, 故an= 于是S100=50+=2 600. 答案:B 3.(2018海淀二模)在數(shù)列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比為2的等比數(shù)列”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:當(dāng)an=0時,也有an=2an-1,n=2,3,4,…,但{an}不是等比數(shù)列,因此充分性不成立;當(dāng){an}是公比為2的等比數(shù)列時,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立. 答案:B 4.若數(shù)列{an}滿足a1=15,且3an+1=3an-2,則使akak+1<0的k值為( ) A.22 B.21 C.24 D.23 解析:因?yàn)?an+1=3an-2,所以an+1-an=-,所以數(shù)列{an}是首項(xiàng)為15,公差為-的等差數(shù)列,所以an=15-(n-1)=-n+,令an=-n+>0,得n<23.5,所以使akak+1<0的k值為23. 答案:D 5.已知數(shù)列{an}滿足a1=1,an+1=則其前6項(xiàng)之和為( ) A.16 B.20 C.33 D.120 解析:a2=2a1=2,a3=a2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14,所以前6項(xiàng)和S6=1+2+3+6+7+14=33,故選C. 答案:C 6.已知等差數(shù)列{an}的公差為d,關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],則使數(shù)列{an}的前n項(xiàng)和Sn最大的正整數(shù)n的值是( ) A.4 B.5 C.6 D.7 解析:∵關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],∴0,9是一元二次方程dx2+2a1x=0的兩個實(shí)數(shù)根,且d<0,∴-=9,a1=-.∴an=a1+(n-1)d=(n-)d,可得a5=-d>0,a6=d<0.∴使數(shù)列{an}的前n項(xiàng)和Sn最大的正整數(shù)n的值是5. 答案:B 7.(2018湘中名校聯(lián)考)若{an}是等差數(shù)列,首項(xiàng)a1>0,a2 016+a2 017>0,a2 016a2 017<0,則使前n項(xiàng)和Sn>0成立的最大正整數(shù)n是( ) A.2 016 B.2 017 C.4 032 D.4 033 解析:因?yàn)閍1>0,a2 016+a2 017>0,a2 016a2 017<0,所以d<0,a2 016>0,a2 017<0,所以S4 032==>0,S4 033==4 033a2 017<0,所以使前n項(xiàng)和Sn>0成立的最大正整數(shù)n是4 032. 答案:C 8.已知數(shù)列{an},“|an+1|>an”是“數(shù)列{an}為遞增數(shù)列”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:∵|an+1|>an,∴或 又∵數(shù)列{an}為遞增數(shù)列,∴an+1>an, ∴“|an+1|>an”是“數(shù)列{an}為遞增數(shù)列”的既不充分也不必要條件. 答案:D 二、填空題 9.(2018沈陽模擬)在數(shù)列{an}中,a1=1,a2=2,an+1=3an-2an-1(n≥2),則an=________. 解析:法一:因?yàn)閍n+1=3an-2an-1(n≥2),所以=2(n≥2),所以an+1-an=(a2-a1)2n-1=2n-1(n≥2),又a2-a1=1,所以an-an-1=2n-2,an-1-an-2=2n-3,…,a2-a1=1,累加,得an=2n-1(n∈N*). 法二:因?yàn)閍n+1=3an-2an-1(n≥2),所以an+1-2an=an-2an-1,得an+1-2an=an-2an-1=an-1-2an-2=…=a2-2a1=0,即an=2an-1(n≥2),所以數(shù)列{an}是以1為首項(xiàng),2為公比的等比數(shù)列,所以an=2n-1(n∈N*). 答案:2n-1(n∈N*) 10.(2018遼寧五校聯(lián)考)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=3且當(dāng)n≥2時,2an=SnSn-1,則{an}的通項(xiàng)公式an=________. 解析:當(dāng)n≥2時,由2an=SnSn-1可得2(Sn-Sn-1)=SnSn-1,∴-=,即-=-,∴數(shù)列{}是首項(xiàng)為,公差為-的等差數(shù)列,∴=+(-)(n-1)=,∴Sn=.當(dāng)n≥2時,an=SnSn-1==,又a1=3,∴an= 答案: 11.(2018廣州調(diào)研)已知數(shù)列{an}滿足a1=1,an+1=a+an,用[x]表示不超過x的最大整數(shù),則=________. 解析:因?yàn)閍n+1=a+an, 所以==-, 即=-, 于是++…+=++…+=-. 因?yàn)閍1=1,a2=2>1,a3=6>1,…, 可知∈(0,1),則-∈(0,1), 所以=0. 答案:0 12.已知數(shù)列{an}滿足a1=-40,且nan+1-(n+1)an=2n2+2n,則an取最小值時n的值為________. 解析:由nan+1-(n+1)an=2n2+2n=2n(n+1), 兩邊同時除以n(n+1),得-=2, 所以數(shù)列是首項(xiàng)為-40、公差為2的等差數(shù)列, 所以=-40+(n-1)2=2n-42, 所以an=2n2-42n, 對于二次函數(shù)f(x)=2x2-42x, 在x=-=-=10.5時,f(x)取得最小值, 因?yàn)閚取正整數(shù),且10和11到10.5的距離相等, 所以n取10或11時,an取得最小值. 答案:10或11 三、解答題 13.(2018棗莊模擬)已知方程anx2-an+1x+1=0(an>0)有兩個根αn、βn,a1=1,且滿足(1-)(1-)=1-2n,其中n∈N*. (1)求數(shù)列{an}的通項(xiàng)公式; (2)若bn=log2(an+1),cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn. 解析:(1)由已知可得,, 又(1-)(1-)=1-2n,∴1-+=1-2n, 整理得,an+1-an=2n,其中n∈N*. ∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=2n-1+2n-2+…+22+2+1==2n-1. (2)由(1)知,bn=log2(2n-1+1)=n, ∴cn=n(2n-1)=n2n-n. ∴Tn=c1+c2+…+cn=12+222+323+…+n2n-(1+2+…+n), 設(shè)Pn=12+222+323+…+n2n,① 則2Pn=122+223+324+…+(n-1)2n+n2n+1,② ①-②得-Pn=2+22+23+…+2n-n2n+1=-n2n+1=(1-n)2n+1-2, ∴Pn=(n-1)2n+1+2. 又Qn=1+2+…+n=, ∴Tn=Pn-Qn=(n-1)2n+1+2-. 14.(2018九江一中模擬)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a22-3a7=2,且,,S3成等比數(shù)列,n∈N*. (1)求數(shù)列{an}的通項(xiàng)公式; (2)令bn=,數(shù)列{bn}的前n項(xiàng)和為Tn,若對于任意的n∈N*,都有64Tn<|3λ-1|成立,求實(shí)數(shù)λ的取值范圍. 解析:(1)設(shè)等差數(shù)列{an}的公差為d, 由得 , 即, 解得或. 當(dāng)a1=-,d=時,=?jīng)]有意義, ∴a1=2,d=2,此時an=2+2(n-1)=2n. (2)bn===[-]. Tn=b1+b2+b3+…+bn =(-)+(-)+(-)+…+ [-]+[-] =[1+--] =-[+], ∴64Tn=5-4[+]<5, 為滿足題意,只需|3λ-1|≥5,∴λ≥2或λ≤-.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用課后訓(xùn)練 2019 高考 數(shù)學(xué) 策略 復(fù)習(xí) 專題 第二 綜合 應(yīng)用 課后 訓(xùn)練
鏈接地址:http://m.appdesigncorp.com/p-4600743.html