歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)

坐標(biāo)系與參數(shù)方程學(xué)案

曲線C1的方程為y=k|x|+2.以坐標(biāo)原點為極點。曲線C2的極坐標(biāo)方程為ρ2+2ρcos θ-3=0. (1)求C2的直角坐標(biāo)方程。

坐標(biāo)系與參數(shù)方程學(xué)案Tag內(nèi)容描述:

1、第21講 坐標(biāo)系與參數(shù)方程 1.2018全國卷在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為2+2cos -3=0. (1)求C2的直角坐標(biāo)方程; (2)若C1與C2。

2、第20講 坐標(biāo)系與參數(shù)方程 1 2016全國卷 在直角坐標(biāo)系xOy中 曲線C1的參數(shù)方程為x acost y 1 asint t為參數(shù) a0 在以坐標(biāo)原點為極點 x軸正半軸為極軸的極坐標(biāo)系中 曲線C2 4cos 1 說明C1是哪一種曲線 并將C1的方程化為極。

3、第1講選修4 4坐標(biāo)系與參數(shù)方程 高考主要考查平面直角坐標(biāo)系中的伸縮變換 直線和圓的極坐標(biāo)方程 參數(shù)方程與普通方程的互化 常見曲線的參數(shù)方程及參數(shù)方程的簡單應(yīng)用 以極坐標(biāo) 參數(shù)方程與普通方程的互化為主要考查形式。

4、第一講 坐標(biāo)系與參數(shù)方程 考點一 極坐標(biāo)方程及應(yīng)用 1 直角坐標(biāo)與極坐標(biāo)的互化公式 把直角坐標(biāo)系的原點作為極點 x軸正半軸作為極軸 并在兩坐標(biāo)系中取相同的長度單位 設(shè)M是平面內(nèi)任意一點 它的直角坐標(biāo)是 x y 極坐標(biāo)是。

5、2 8 1 坐標(biāo)系與參數(shù)方程 1 2018全國卷 在直角坐標(biāo)系xOy中 曲線C1的方程為y k x 2 以坐標(biāo)原點為極點 x軸正半軸為極軸建立極坐標(biāo)系 曲線C2的極坐標(biāo)方程為 2 2 cos 3 0 1 求C2的直角坐標(biāo)方程 2 若C1與C2有且僅有三個公。

6、選修44 坐標(biāo)系與參數(shù)方程 第1課時 坐 標(biāo) 系 理解極坐標(biāo)的概念 會正確進(jìn)行點的極坐標(biāo)與直角坐標(biāo)的互化 能運用極坐標(biāo)解決相關(guān)問題 了解極坐標(biāo)系 會正確將極坐標(biāo)方程化為直角坐標(biāo)方程 會根據(jù)所給條件建立直線 圓的極坐。

【坐標(biāo)系與參數(shù)方程學(xué)案】相關(guān)DOC文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!