新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析

上傳人:仙*** 文檔編號(hào):62245204 上傳時(shí)間:2022-03-14 格式:DOC 頁(yè)數(shù):3 大?。?1KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析_第1頁(yè)
第1頁(yè) / 共3頁(yè)
新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析_第2頁(yè)
第2頁(yè) / 共3頁(yè)
新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析_第3頁(yè)
第3頁(yè) / 共3頁(yè)

最后一頁(yè)預(yù)覽完了!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編理數(shù)北師大版練習(xí):第十二章 選修4-4 坐標(biāo)系與參數(shù)方程 Word版含解析(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 課時(shí)作業(yè) A組——基礎(chǔ)對(duì)點(diǎn)練 1.(20xx·沈陽(yáng)市模擬)在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),直線l:(t為參數(shù)). (1)求曲線C的直角坐標(biāo)方程,直線l的普通方程; (2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)P(-2,0),若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值. 解析:(1)由ρsin2θ=2acos θ(a>0)兩邊同乘以ρ得,曲線C:y2=2ax,由直線l:(t為參數(shù)),消去t,得直線l:x-y+2=0. (2)將代入y2=2ax得, t2-2at+8a=0

2、, 由Δ>0得a>4,設(shè)M(-2+t1,t1),N(-2+t2,t2),則t1+t2=2a,t1t2=8a, ∵|PM|,|MN|,|PN|成等比數(shù)列, ∴|t1-t2|2=|t1t2|,∴(2a)2-4×8a=8a, ∴a=5. 2.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=. (1)求直線l的直角坐標(biāo)方程和曲線C的普通方程; (2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值. 解析:(1)因?yàn)橹本€l的極坐標(biāo)方程為ρcos(θ+)=, 所以ρ(cos θ-

3、sin θ)=,即x-y-2=0. 曲線C的參數(shù)方程為(α為參數(shù)),利用同角三角函數(shù)的基本關(guān)系消去α,可得+=1. (2)設(shè)點(diǎn)P(3cos α,sin α)為曲線C上任意一點(diǎn),則點(diǎn)P到直線l的距離 d==, 故當(dāng)cos(α+)=-1時(shí),d取得最大值,為. B組——能力提升練 1.(20xx·太原模擬)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,且曲線C的左焦點(diǎn)F在直線l上. (1)若直線l與曲線C交于A,B兩點(diǎn),求|FA|·|FB|的值; (2)求曲線C的內(nèi)接矩形的周長(zhǎng)的最大值

4、. 解析:(1)曲線C的直角坐標(biāo)方程為+=1,左焦點(diǎn)F(-2,0)代入直線AB的參數(shù)方程,得m=-2,直線AB的參數(shù)方程是(t為參數(shù))代入橢圓方程得t2-2t-2=0,所以t1·t2=-2,所以|FA|·|FB|=2. (2)橢圓+=1的參數(shù)方程為根據(jù)橢圓和矩形的對(duì)稱性可設(shè)橢圓C的內(nèi)接矩形的頂點(diǎn)為(2cos θ,2sin θ),(-2cos θ,2sin θ),(2cos θ,-2sin θ),(-2cos θ,-2sin θ),所以橢圓C的內(nèi)接矩形的周長(zhǎng)為8cos θ+8sin θ=16sin, 當(dāng)θ+=時(shí),即θ=時(shí)橢圓C的內(nèi)接矩形的周長(zhǎng)取得最大值16. 2.(20xx·石家莊模擬)

5、在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos θ=a(a>0),Q為l上一點(diǎn),以O(shè)Q為邊作等邊三角形OPQ,且O,P,Q三點(diǎn)按逆時(shí)針?lè)较蚺帕校? (1)當(dāng)點(diǎn)Q在l上運(yùn)動(dòng)時(shí),求點(diǎn)P運(yùn)動(dòng)軌跡的直角坐標(biāo)方程; (2)若曲線C:x2+y2=a2,經(jīng)過(guò)伸縮變換得到曲線C′,試判斷點(diǎn)P的軌跡與曲線C′是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒(méi)有則說(shuō)明理由. 解析:(1)設(shè)點(diǎn)P的極坐標(biāo)為(ρ,θ), 則由題意可得點(diǎn)Q的極坐標(biāo)為(ρ,θ+), 再由點(diǎn)Q的直角坐標(biāo)中的橫坐標(biāo)等于 a,a>0, 可得ρcos (θ+)=a, 可得ρcos θ- ρsin θ=a,化為直角坐標(biāo)方程為x-y=a. 故當(dāng)點(diǎn)Q在l上運(yùn)動(dòng)時(shí),點(diǎn)P的直角坐標(biāo)方程為x-y-2a=0. (2)曲線C:x2+y2=a2, 即代入,得+y′2=a2, 即+y2=a2. 聯(lián)立,得消去x,得7y2+4ay=0,解得y1=0,y2=-a, 所以點(diǎn)P的軌跡與曲線C′有交點(diǎn),交點(diǎn)的直角坐標(biāo)分別為(a,-a),(2a,0).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!