《231圖形的旋轉(zhuǎn)(1) (2)》由會(huì)員分享,可在線閱讀,更多相關(guān)《231圖形的旋轉(zhuǎn)(1) (2)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
23.1 圖形的旋轉(zhuǎn)(1)
第一課時(shí)
教學(xué)內(nèi)容
1.什么叫旋轉(zhuǎn)?旋轉(zhuǎn)中心?旋轉(zhuǎn)角?
2.什么叫旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn)?
教學(xué)目標(biāo)
了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問(wèn)題.
通過(guò)復(fù)習(xí)平移、軸對(duì)稱(chēng)的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開(kāi)始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問(wèn)題.
重難點(diǎn)、關(guān)鍵
1.重點(diǎn):旋轉(zhuǎn)及對(duì)應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用.
2.難點(diǎn)與關(guān)鍵:從活生生的數(shù)學(xué)中抽出概念.
教具、學(xué)具準(zhǔn)備
小黑板、三角尺
教學(xué)過(guò)程
一、復(fù)
2、習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下面各題.
1.將如圖所示的四邊形ABCD平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形.
2.如圖,已知△ABC和直線L,請(qǐng)你畫(huà)出△ABC關(guān)于L的對(duì)稱(chēng)圖形△A′B′C′.
3.圓是軸對(duì)稱(chēng)圖形嗎?等腰三角形呢?你還能指出其它的嗎?
(口述)老師點(diǎn)評(píng)并總結(jié):
(1)平移的有關(guān)概念及性質(zhì).
(2)如何畫(huà)一個(gè)圖形關(guān)于一條直線(對(duì)稱(chēng)軸)的對(duì)稱(chēng)圖形并口述它既有的一些性質(zhì).
(3)什么叫軸對(duì)稱(chēng)圖形?
二、探索新知
我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯
3、定的,下面我們就來(lái)研究.
1.請(qǐng)同學(xué)們看講臺(tái)上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?
(口答)老師點(diǎn)評(píng):時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)針的中心.如果從現(xiàn)在到下課時(shí)針轉(zhuǎn)了_______度,分針轉(zhuǎn)了_______度,秒針轉(zhuǎn)了______度.
2.再看我自制的好像風(fēng)車(chē)風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng).如何轉(zhuǎn)到新的位置?(老師點(diǎn)評(píng)略)
3.第1、2兩題有什么共同特點(diǎn)呢?
共同特點(diǎn)是如果我們把時(shí)針、風(fēng)車(chē)風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度.
4、像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.
如果圖形上的點(diǎn)P經(jīng)過(guò)旋轉(zhuǎn)變?yōu)辄c(diǎn)P′,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).
下面我們來(lái)運(yùn)用這些概念來(lái)解決一些問(wèn)題.
例1.如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到△OEF,在這個(gè)旋轉(zhuǎn)過(guò)程中:
(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?
(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B分別移動(dòng)到什么位置?
解:(1)旋轉(zhuǎn)中心是O,∠AOE、∠BOF等都是旋轉(zhuǎn)角.
(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置.
例2.(學(xué)生
5、活動(dòng))如圖,四邊形ABCD、四邊形EFGH都是邊長(zhǎng)為1的正方形.
(1)這個(gè)圖案可以看做是哪個(gè)“基本圖案”通過(guò)旋轉(zhuǎn)得到的?
(2)請(qǐng)畫(huà)出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
(3)指出,經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B、C、D分別移到什么位置?
(老師點(diǎn)評(píng))
(1)可以看做是由正方形ABCD的基本圖案通過(guò)旋轉(zhuǎn)而得到的.(2)畫(huà)圖略.(3)點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D移到的位置是點(diǎn)E、點(diǎn)F、點(diǎn)G、點(diǎn)H.
最后強(qiáng)調(diào),這個(gè)旋轉(zhuǎn)中心是固定的,即正方形對(duì)角線的交點(diǎn),但旋轉(zhuǎn)角和對(duì)應(yīng)點(diǎn)都是不唯一的.
三、鞏固練習(xí)
教材P65 練習(xí)1、2、3.
四、應(yīng)用拓展
例3.兩個(gè)邊長(zhǎng)
6、為1的正方形,如圖所示,讓一個(gè)正方形的頂點(diǎn)與另一個(gè)正方形中心重合,不難知道重合部分的面積為,現(xiàn)把其中一個(gè)正方形固定不動(dòng),另一個(gè)正方形繞其中心旋轉(zhuǎn),問(wèn)在旋轉(zhuǎn)過(guò)程中,兩個(gè)正方形重疊部分面積是否發(fā)生變化?說(shuō)明理由.
分析:設(shè)任轉(zhuǎn)一角度,如圖中的虛線部分,要說(shuō)明旋轉(zhuǎn)后正方形重疊部分面積不變,只要說(shuō)明S△OEE`=S△ODD`,那么只要說(shuō)明△OEF′≌△ODD′.
解:面積不變.
理由:設(shè)任轉(zhuǎn)一角度,如圖所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=
7、OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四邊形OE`BD`=S正方形OEBD=
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))
本節(jié)課要掌握:
1.旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念.
2.旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn)及其它們的應(yīng)用.
六、布置作業(yè)
1.教材P66 復(fù)習(xí)鞏固1、2、3.
2.《同步練習(xí)》
一、選擇題
1.在26個(gè)英文大寫(xiě)字母中,通過(guò)旋轉(zhuǎn)180°后能與原字母重合的有( ).
A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)
2.從5點(diǎn)15分到5點(diǎn)20分,分針旋轉(zhuǎn)
8、的度數(shù)為( ).
A.20° B.26° C.30° D.36°
3.如圖1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對(duì)應(yīng)點(diǎn),且點(diǎn)B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于( ).
A.70° B.80° C.60° D.50°
(1) (2) (3)
二、填空題.
1.在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)
9、沿著某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為_(kāi)_______,這個(gè)定點(diǎn)稱(chēng)為_(kāi)_______,轉(zhuǎn)動(dòng)的角為_(kāi)_______.
2.如圖2,△ABC與△ADE都是等腰直角三角形,∠C和∠AED都是直角,點(diǎn)E在AB上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么旋轉(zhuǎn)中心是點(diǎn)_________;旋轉(zhuǎn)的度數(shù)是__________.
3.如圖3,△ABC為等邊三角形,D為△ABC內(nèi)一點(diǎn),△ABD經(jīng)過(guò)旋轉(zhuǎn)后到達(dá)△ACP的位置,則,(1)旋轉(zhuǎn)中心是________;(2)旋轉(zhuǎn)角度是________;(3)△ADP是________三角形.
三、綜合提高題.
1.閱讀下面材料:
如圖4
10、,把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△ECD的位置.
如圖5,以BC為軸把△ABC翻折180°,可以變到△DBC的位置.
(4) (5) (6) (7)
如圖6,以A點(diǎn)為中心,把△ABC旋轉(zhuǎn)90°,可以變到△AED的位置,像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀和大小的圖形變換,叫做三角形的全等變換.
回答下列問(wèn)題
如圖7,在正方形ABCD中,E是AD的中點(diǎn)
11、,F(xiàn)是BA延長(zhǎng)線上一點(diǎn),AF=AB.
(1)在如圖7所示,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE移到△ADF的位置?
(2)指出如圖7所示中的線段BE與DF之間的關(guān)系.
2.一塊等邊三角形木塊,邊長(zhǎng)為1,如圖,現(xiàn)將木塊沿水平線翻滾五個(gè)三角形,那么B點(diǎn)從開(kāi)始至結(jié)束所走過(guò)的路徑長(zhǎng)是多少?
答案:
一、1.B 2.C 3.B
二、1.旋轉(zhuǎn) 旋轉(zhuǎn)中心 旋轉(zhuǎn)角 2.A 45° 3.點(diǎn)A 60° 等邊
三、1.(1)通過(guò)旋轉(zhuǎn),即以點(diǎn)A為旋轉(zhuǎn)中心,將△ABE逆時(shí)針旋轉(zhuǎn)90°.
(2)BE=DF,BE⊥DF
2.翻滾一次 滾120° 翻滾五個(gè)三角形,正好翻滾一個(gè)圓,所以所走路徑是2.