立軸式破碎機(jī)設(shè)計(jì)
立軸式破碎機(jī)設(shè)計(jì),立軸式破碎機(jī)設(shè)計(jì),立軸,破碎,設(shè)計(jì)
畢 業(yè) 設(shè) 計(jì) 任 務(wù) 書 200 8年2月19日 畢業(yè)設(shè)計(jì)題目家用食品粉碎機(jī)設(shè)計(jì)指導(dǎo)教師職稱副教授專業(yè)名稱機(jī)電一體化技術(shù)班級學(xué)生姓名學(xué)號設(shè)計(jì)要求1.完成資料翻譯一份(3000字以上);2.完成畢業(yè)設(shè)計(jì)調(diào)研報告一份;3. 家用食品粉碎機(jī)設(shè)計(jì)的PLC設(shè)計(jì);4.完成畢業(yè)設(shè)計(jì)說明書一份;5.完成相關(guān)圖紙。完成畢業(yè)課題的計(jì)劃安排序號內(nèi)容時間安排1外文資料翻譯2008.2.20至2008.2.292搜集相關(guān)資料并調(diào)研,完成調(diào)研報告2008.3.1至2008.3.53編寫說明書,繪制相關(guān)圖紙。家用食品粉碎機(jī)設(shè)計(jì)的PLC設(shè)計(jì)2008.3.6至2008.4.104整理畢業(yè)設(shè)計(jì)說明書并定稿,準(zhǔn)備答辯2008.4.10 至2008.4.205答辯2008.4.20答辯提交資料外文資料翻譯,畢業(yè)設(shè)計(jì)調(diào)研報告,畢業(yè)設(shè)計(jì)說明書,相關(guān)圖紙。計(jì)劃答辯時間2008.4.20 無錫職業(yè)技術(shù)學(xué)院機(jī)電技術(shù)學(xué)院 2008 年 2 月19日 分類號 密級無錫職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說明書題 目 家用食品粉碎機(jī)設(shè)計(jì) 學(xué)生姓名: 專 業(yè): 指導(dǎo)教師: 職 稱: 畢業(yè)設(shè)計(jì)說明書提交日期 2008.4.20 地址:無錫職業(yè)技術(shù)學(xué)院目錄1引言12立軸式破碎機(jī)總體結(jié)構(gòu)12.1入料部分12.2脫粒部分23 立軸式破碎機(jī)的設(shè)計(jì)23.1 電動機(jī)的選擇43.2 釘齒條上的釘齒轉(zhuǎn)速53.3 釘齒滾筒的轉(zhuǎn)速83.4 電動機(jī)的功率83.5 電動機(jī)的轉(zhuǎn)速114 傳動裝置的總體設(shè)計(jì)165 立軸式破碎機(jī)主要參數(shù)的確定196 PLC的設(shè)計(jì)246.1 PLC的選擇266.2現(xiàn)場器件與PLC內(nèi)部等效繼電器地址編號對照表286.3 工作流程與動作順序表326.4 PLC與現(xiàn)場器件的連接圖366.5 PLC程序的設(shè)計(jì)366.6 指令程序397 結(jié)論 41參考文獻(xiàn)42致 謝43立軸式破碎機(jī)設(shè)計(jì)摘要:為了降低農(nóng)民在粉碎機(jī)設(shè)計(jì)時勞動強(qiáng)度、提高工作效率,設(shè)計(jì)粉碎機(jī)設(shè)計(jì)。該機(jī)主要有入料口、柵格式凹板和釘齒脫粒滾筒及傳動部件等組成。以電動機(jī)為動力源,動力由電動機(jī)輸出軸輸出,再通過傳動帶傳遞到釘齒脫粒滾筒上,釘齒脫粒滾筒配合柵格式凹板將粉碎機(jī)設(shè)計(jì),玉米粒從柵格式凹板分離并排出機(jī)體外,而玉米芯從入料的另一端排出機(jī)體之外。關(guān)鍵詞:粉碎機(jī);結(jié)構(gòu);設(shè)計(jì) 1引言 隨著社會的進(jìn)步,生活中的每一個角落都有機(jī)器的參與。農(nóng)業(yè)是我國的基礎(chǔ)經(jīng)濟(jì)、是國家發(fā)展的根本,機(jī)械化的普及,不僅使農(nóng)業(yè)加強(qiáng)了農(nóng)業(yè)化生產(chǎn),同時也減輕了農(nóng)民的勞動強(qiáng)度。據(jù)不完全統(tǒng)計(jì),我國北方地區(qū)種植小麥、玉米等農(nóng)作物約占我國農(nóng)業(yè)經(jīng)濟(jì)的45%以上,同年出口量北方地區(qū)占全國達(dá)20%左右。因此我國北方地區(qū)更需要實(shí)現(xiàn)農(nóng)業(yè)機(jī)械化生產(chǎn),從而提高農(nóng)業(yè)的勞動生產(chǎn)率。如今我國北方大部分地區(qū)基本上從種到收到入倉,實(shí)現(xiàn)了機(jī)械化作業(yè),更值得慶幸的是每種機(jī)械的開發(fā)和利用都有相當(dāng)可觀的市場,科技的創(chuàng)新更很好的開闊了市場。這里僅對一種粉碎機(jī)設(shè)計(jì)是課題討論研究,粉碎機(jī)設(shè)計(jì)是玉米脫皮后,經(jīng)過一段時間的風(fēng)干,然后將玉米利用粉碎機(jī)使玉米和玉米芯分開,這種機(jī)械就是粉碎機(jī)設(shè)計(jì)。它的工作原理是:粉碎機(jī)設(shè)計(jì)在進(jìn)行粉碎機(jī)設(shè)計(jì)時,利用釘齒滾筒回轉(zhuǎn)運(yùn)動的釘齒與柵格式凹板之間的間隙相配合,使玉米粒拖下(釘齒滾筒和柵格式凹板之間的揉搓作用,將玉米粒脫離玉米芯,并借助其他的機(jī)械機(jī)構(gòu)將玉米粒和玉米芯分別從兩個不同的出口排出機(jī)體之外,循環(huán)脫粒,不斷的進(jìn)行填入-脫粒-排出機(jī)體。2粉碎機(jī)設(shè)計(jì)總體結(jié)構(gòu)粉碎機(jī)設(shè)計(jì)主要組成部分:入料口、釘齒脫粒滾筒軸、柵格式凹板、機(jī)架等部分組成。整體組成如圖1所示:2.1入料部分入料口與粉碎機(jī)設(shè)計(jì)的上蓋部分相連,它是利用一厘米厚的鐵板制成,入料部位與釘齒滾筒的釘齒部位相切,將已撥皮的玉米從入料口進(jìn)入,下滑到脫粒部位,即釘齒滾筒和柵格式凹板之間,進(jìn)行脫粒。2.2脫粒部分 脫粒部分主要是由釘齒滾筒、柵格式凹板、半圓型上蓋組成。玉米穗在釘齒滾筒和柵格式凹板之間進(jìn)行脫粒,將已脫下的玉米粒從柵格式凹板的縫隙漏下,落到下滑板,由倉口排出機(jī)體之外,玉米芯借助于滾筒上的螺旋排列的釘齒的螺旋推力和螺旋導(dǎo)向作用,由入料口的另一端(即出料口)排出機(jī)體之外。2.3篩選部分 篩選部分主要是由柵格式凹板完成,它是由一定數(shù)量的鐵條及兩條主要梁和兩條副梁組成,每兩根鐵條之間的縫隙可以將玉米卡住,然后快速旋轉(zhuǎn)的釘齒滾筒將被卡死的玉米強(qiáng)行脫粒,當(dāng)然,無論是工作時還是安裝時,柵格式凹板是固定不動的。粉碎機(jī)設(shè)計(jì)之后,再將玉米粒經(jīng)過柵格式凹板,從凹板的縫隙漏出,順著斜滑板滑出機(jī)體之外,目的是將玉米和玉米芯分開。2.4機(jī)架部分 機(jī)架是由左機(jī)架、右機(jī)架、出料口、下滑板及穩(wěn)定結(jié)實(shí)的主機(jī)梁組成,機(jī)架是粉碎機(jī)設(shè)計(jì)的主要支撐,他承擔(dān)著粉碎機(jī)的主要重量和動力、負(fù)載和力矩,因此它的設(shè)計(jì)是許強(qiáng)不弱的部分。機(jī)架的兩部分要各自穩(wěn)定,而且相對固定,以便做到機(jī)械在運(yùn)轉(zhuǎn)過程中不會產(chǎn)生晃動、歪斜,造成人身危險,因此為了機(jī)架的堅(jiān)固,此立軸式破碎機(jī)設(shè)計(jì)采用三毫米厚的角鐵制成。2.5粉碎機(jī)設(shè)計(jì)的總體設(shè)計(jì) 為了更優(yōu)化玉米脫離機(jī)的機(jī)型和結(jié)構(gòu)設(shè)計(jì),此粉碎機(jī)設(shè)計(jì)采用電力拖動,而且電動機(jī)也同樣采取節(jié)能式,電動機(jī)安裝在粉碎機(jī)設(shè)計(jì)的下部,與粉碎機(jī)的機(jī)架的下機(jī)梁固定連接,這樣可以節(jié)省電動機(jī)所占用的空間。粉碎機(jī)設(shè)計(jì)的從入料到脫粒到分離玉米粒和玉米芯,最后將玉米粒和玉米芯排出機(jī)體之外,是粉碎機(jī)設(shè)計(jì)一體完成的,它最大的優(yōu)點(diǎn)是在短時間內(nèi)可以完成幾個人的勞動強(qiáng)度,從而提高了工作效率,節(jié)省了勞動時間。此粉碎機(jī)設(shè)計(jì)有這些優(yōu)點(diǎn)之外,還有安全性能高、效率高、堅(jiān)固耐用、結(jié)構(gòu)簡單便于維修和保管。圖1總體結(jié)構(gòu)3 立軸式破碎機(jī)設(shè)計(jì)根據(jù)粉碎機(jī)一書的介紹,有關(guān)粉碎機(jī)設(shè)計(jì)TY4.5型的相關(guān)設(shè)計(jì)的參考數(shù)據(jù):粉碎機(jī)主軸為750850,柵格式凹板的直徑為320,其凹板的長度為710,在主軸上設(shè)有四條釘齒條,每條釘齒條上均勻分布著七個釘齒,總共28個釘齒呈螺旋均勻安裝,以便玉米芯隨螺旋釘齒的螺旋作用排出機(jī)體之外,釘齒滾筒的直徑為,滾筒上的釘齒長度為33.5。3.1 電動機(jī)的選擇根據(jù)實(shí)踐測量得知每個釘齒的均勻受力為40,當(dāng)粉碎機(jī)設(shè)計(jì)正常工作時釘齒滾筒上的釘齒條快速旋轉(zhuǎn),其中均有兩條釘齒條受玉米所給的切向力,而另外兩個釘齒條是空行程,因此,即粉碎機(jī)設(shè)計(jì)正常工作時,受到的切向力為560。其中:釘齒所受的力 參與工作的釘齒個數(shù) 參與工作的釘齒條數(shù)3.2 釘齒條上的釘齒轉(zhuǎn)速當(dāng)粉碎機(jī)設(shè)計(jì)的釘齒滾筒快速轉(zhuǎn)動時,其上釘齒條的釘齒同樣有一定的轉(zhuǎn)速,這個轉(zhuǎn)速原于主軸的轉(zhuǎn)速和釘齒的半徑,即:, 其中:釘齒的轉(zhuǎn)速 粉碎機(jī)主軸的轉(zhuǎn)速 釘齒距軸心的距離3.3 釘齒滾筒的轉(zhuǎn)速粉碎機(jī)設(shè)計(jì)所需功率為,應(yīng)由粉碎機(jī)的工作阻力和運(yùn)轉(zhuǎn)參數(shù)求定,即:,計(jì)算求得: 。3.4 電動機(jī)的功率電動機(jī)功率由公式來計(jì)算,粉碎機(jī)傳動裝置的總效率,應(yīng)由組成傳動裝置的各個部分運(yùn)動副的效率只積,即 ,其中、 分別為每一個轉(zhuǎn)動副的效率,選取傳動副的效率值如下: 滾動軸承(每對)0.980.995 即取 =0.99 V帶傳動 0.940.97 即取 =0.97 滾筒轉(zhuǎn)動 (因?yàn)獒旪X條固定于滾筒上) 即取 =1則 由此可得電動機(jī)的功率:3.5 電動機(jī)的轉(zhuǎn)速 根據(jù)資料粉碎機(jī)一書可查得主軸的轉(zhuǎn)速在 750850,按機(jī)械設(shè)計(jì)指導(dǎo)書中表一所推薦的傳動比合理取值范圍,取V帶的傳動比24,即可滿足電動機(jī)的轉(zhuǎn)速與主軸的轉(zhuǎn)速相匹配,故電動機(jī)轉(zhuǎn)速范圍可選為:。 符合這一范圍的同步電動機(jī)轉(zhuǎn)速的有720,1440,2900,根據(jù)容量和相關(guān)轉(zhuǎn)速,由機(jī)械設(shè)計(jì)通用手冊查出三種適宜的電動機(jī)型號,因此有三種不同的傳動比方案,如表1:表1 電動機(jī)的型號和技術(shù)參數(shù)及傳動比 方案電動機(jī)型號額定功率電動機(jī)轉(zhuǎn)速基本參數(shù)P/kW同步轉(zhuǎn)速滿載轉(zhuǎn)速效率(%)電動機(jī)重量(KG)功率因數(shù)1Y160M2-85.5750720851190.742Y132S2-45.51500144085.5680.843Y132S1-25.53000290085.5640.88綜臺考慮電動機(jī)和傳動裝置的尺寸、重量以及帶傳動的傳動比,可知方案3比較適合。因此選定電動機(jī)型號為Y132S1-2。所選電動機(jī)的額定功率5.5kw,滿載轉(zhuǎn)速=2900rmin,總傳動比適中,傳動裝置結(jié)構(gòu)較緊湊。如表2:表2 其主要參數(shù)如下表型 號 額定功率 KW 滿 載 時 額 定 電 流額 定 轉(zhuǎn) 矩最 大 轉(zhuǎn) 矩轉(zhuǎn)速rmin 電流(380V)效 率 % 功率因數(shù)Y132S2-45.514401185.50.8472.02.2表 電動機(jī)尺寸列表單位中心高 H 外形尺寸底腳安裝尺寸 地腳螺栓孔直徑 軸伸尺寸 裝鍵部位尺寸 電動機(jī)的輸出軸尺寸 1324 傳動裝置的總體設(shè)計(jì)4.1 電動機(jī)的選擇10411粉碎機(jī)設(shè)計(jì)的設(shè)計(jì)參數(shù) 進(jìn)料粒徑150出料粒徑10412 功率的確定由邦德理論 N=k(1/1/) (4-1)式中:d出料粒徑,um;D進(jìn)料粒徑,um;Q產(chǎn)量,t/h;得 N=185(1/1/)X40=57kw由電機(jī)功率,查手冊:選電機(jī)型號為Y280M-6 功率為55kw 轉(zhuǎn)速為980r/min 外形尺寸為1198555640(長寬高)。42 傳動部分的設(shè)計(jì)104.2.1 確定計(jì)算功率Pca考慮到載荷的性質(zhì)、原動機(jī)的不同和每天工作時間的長短等,計(jì)算功率Pca比要求傳遞的功率P略大,即 (4-2)式中: KA工作情況系數(shù), 4.2.2 選擇V帶型號1根據(jù)計(jì)算功率 由機(jī)械設(shè)計(jì)手冊圖12-1-1確定選用D型帶。4.2.3 確定帶輪直徑dd1,dd2a) 參考機(jī)械設(shè)計(jì)手冊帶傳動設(shè)計(jì)部分,選取小帶輪直徑=355。b) 驗(yàn)算帶的轉(zhuǎn)速 (4-3)= 帶的速度合適 (普通V帶)c) 從動帶輪直徑= (4-4) 由機(jī)械設(shè)計(jì)手冊表12-1-10查得=400mm4.2.4 確定中心距a和帶的基準(zhǔn)長度根據(jù) 0.7(+), 故aa剖面安全。b. bb截面右側(cè)抗彎截面系數(shù) 抗扭截面系數(shù) 彎曲應(yīng)力 切應(yīng)力 由附表10-1查得過盈配合引起的有效應(yīng)力集中系數(shù)。又。則 顯然,故bb截面右側(cè)安全。c. bb截面左側(cè) bb截面左右側(cè)的彎矩、扭矩相同。彎曲應(yīng)力 切應(yīng)力 ,由附表10-2查得圓角引起的有效應(yīng)力集中系數(shù),由附表10-4查得絕對尺寸系數(shù)。則 顯然,故bb截面左側(cè)安全。以上計(jì)算表明:軸的彎扭合成強(qiáng)度和疲勞強(qiáng)度是足夠的。5.3.3 轉(zhuǎn)子的設(shè)計(jì)本設(shè)計(jì)參閱了國內(nèi)市場上對粉碎機(jī)的研究資料,結(jié)合各類型粉碎機(jī)轉(zhuǎn)子的不同結(jié)構(gòu) ,錘頭排列分布方式如圖5-3所示。圖5-3 轉(zhuǎn)子的安裝結(jié)構(gòu)1-鍵;2-軸套;3-上圓盤;4-中圓盤;5-錘頭;6-下圓盤;7-轉(zhuǎn)子隔套;8、9-偏心銷軸;10-鍵;11-軸套;12-主軸由圖5-3可知, 錘頭在兩隔板之間是按60的間隔布置著六個錘頭,即著六個錘頭中心線處在一個平面上。設(shè)計(jì)時適當(dāng)調(diào)整錘頭間隔套尺寸,保持錘頭總數(shù)不變,而如此排布錘頭在破碎腔空間上有效利用了錘頭的“空間打擊”能力,能夠顯著提高破碎效率,降低了能耗。5.3.3.1 錘頭的設(shè)計(jì)11錘頭是錘式破碎的主要工作零件。錘頭的質(zhì)量、形狀和材質(zhì)對粉碎機(jī)的生產(chǎn)能力有很大的影響。錘頭動能的大小與錘頭的質(zhì)量成正比,動能越大,即錘頭的質(zhì)量愈大,破碎效率越高,能耗也愈大。因此,要根據(jù)不同的進(jìn)料塊尺寸來選擇適當(dāng)?shù)腻N頭質(zhì)量。錘頭的耐磨性是其主要質(zhì)量指標(biāo),提高錘頭的耐磨性,可縮短粉碎機(jī)的檢修停車時間。從而,提高粉碎機(jī)的利用率和減少維護(hù)費(fèi)用。傳統(tǒng)的錘頭一般是用高碳鋼鍛造或鑄造,也有用高錳鋼鑄造的。近來有的用高鉻鑄鐵錘頭復(fù)合鑄造,即錘柄采用ZG310570鋼,而錘頭采用高鉻鑄鐵,其耐磨性比高錳鋼錘頭提高數(shù)倍。現(xiàn)在錘頭的設(shè)計(jì)已經(jīng)由傳統(tǒng)的整體式設(shè)計(jì)轉(zhuǎn)變?yōu)榻M合式的結(jié)構(gòu)設(shè)計(jì)。另外,新型材料的研制,特別是高硬度耐磨材料的研制成功也為錘頭的設(shè)計(jì)及錘頭性能的提高提供了保證條件,也為本課題提供了較大的選擇余地。在綜合考慮了本課題的技術(shù)要求和工作要求后,我們決定采用新型的組合式錘頭結(jié)構(gòu)設(shè)計(jì)(如圖5-4所示)。 圖5-4 組合式錘頭5.3.3.2 安裝3轉(zhuǎn)子與主軸之間的配合為間隙配合,配合為D8/H8。5.4 軸承和鍵的選用85.4.1 軸承的選用和潤滑a軸承所受載荷的大小、方向和性質(zhì),是選擇滾動軸承的主要依據(jù)。上端選: GB/T288-1994 1536622型調(diào)心滾子軸承下端選: GB/T288-1994 153622型調(diào)心滾子軸承 GB5801-1994 9039430型推力調(diào)心滾子軸承b校核軸承的使用壽命根據(jù) (5-31)對于153662型軸承,假定其壽命為3年查手冊 該軸承符合要求。c軸承潤滑方式選用油管潤滑。5.4.2 鍵的選用a鍵分別選平鍵 2816104 (GB1095-86) 3620848 (GB1095-86)b平鍵的校核 根據(jù) (5-32)T 轉(zhuǎn)矩,;d 軸的直徑,;h 鍵的高度,; 鍵的工作長度,; 許用擠壓應(yīng)力,由機(jī)械手冊表3.1查得=3045。鍵一:2816104 符合要求。鍵二:3620848符合要求。第六章 PLC設(shè)計(jì)1 PLC的選擇PLC控制系統(tǒng)輸入信號有20個,均為開關(guān)量,其中手動開關(guān)有兩個,選擇開關(guān)有3個延時,開關(guān)有2個,接近開關(guān)有7個,壓力輔助1個。PLC控制系統(tǒng)的輸出信號有14個,其中12驅(qū)動中間繼電器KA1KA10,2個驅(qū)動延時繼電器。根據(jù)輸入和輸出信號個數(shù),PLC可選三菱FX1N-40MR-001,其輸入點(diǎn)數(shù)有24,輸出點(diǎn)數(shù)有16,滿足要求而且留有一定裕量。2現(xiàn)場器件與PLC內(nèi)部等效繼電器地址編號對照表輸入信號名稱功能I/O編號SA2點(diǎn)動/半點(diǎn)動X0SA3脫模方式X1SA4壓制方式X2SB4靜止X3SB5慢下X4SB6回程X5SB7頂出X6SB8退回X7SB9工作1X10SB10工作2X11KT1保壓延時X12KT2取坯延時X13SP1主缸壓力X14SQ1滑塊下限X15SQ2滑塊快轉(zhuǎn)慢X16SQ3滑塊浮動X17SQ4滑塊下限X20SQ5頂缸上限X21SQ6頂缸下限X22光電保護(hù)X23輸出信號KA1Y0KA2Y1KA3Y2KA4Y3KA5Y4KA6Y5KA7Y6KA8Y7KA9Y10KA10Y11KA11Y12KA12Y13KT1Y14KT2Y153工作流程與動作順序工作方式序號動作名稱液壓閥(YA)123456789101112點(diǎn)動1滑塊快下+2滑塊回程+3頂缸頂出+4頂缸退回+半自動浮動壓制A一般脫模1滑塊快下+2滑塊慢下預(yù)壓+3浮動壓制+4保壓5泄壓+6滑塊回程+7頂缸退回+8手動取坯9頂缸頂出+10手動加料11轉(zhuǎn)下一循環(huán)B保護(hù)脫模1滑塊快下+2滑塊慢下預(yù)壓+3浮動壓制+4保壓5泄壓+6頂缸退回+7滑塊回程+8手動取坯9頂缸頂出+10手動加料11轉(zhuǎn)下一循環(huán)單向壓制C一般脫模1滑塊快下+2滑塊慢下壓制+3保壓4泄壓+5滑塊回程+6頂缸頂出+7手動取坯8頂缸退回+9手動加料10轉(zhuǎn)下一循環(huán)D保護(hù)脫模1滑塊快下+2滑塊慢下壓制+3保壓4泄壓+5頂缸頂出+6滑塊回程+7手動取坯8頂缸退回+9手動加料10轉(zhuǎn)下一循環(huán)其它1靜止2緊急回程+3緊急停止4 PLC與現(xiàn)場器件的連接圖5 PLC程序的設(shè)計(jì) 梯形圖程序如下: 先按下SB2啟動電機(jī),把選擇開關(guān)SA2旋轉(zhuǎn)到“調(diào)整”位置按壓相應(yīng)的按扭可得相應(yīng)的點(diǎn)動動作。按下SB6,X005置1,輔助繼電器M12得電驅(qū)動液壓閥YA1、YA2、YA 6、YA9動作,滑塊回程,放手手動作即停。打開光電保護(hù),按下SB5,X004置1,輔助繼電器 M11得電驅(qū)動液壓閥壓YA1、YA4、YA5動作,滑塊慢下,放手動作則停止。同理,按下SB7,輔助繼電器M13得電驅(qū)動液壓閥YA1、YA8、YA11動作,頂缸頂出,放手動作即停止。按下SB8,輔助繼電器M14得電驅(qū)動液壓閥YA1、YA7動作,頂缸退回,放手動作即停止。若要完成半自動浮動壓制中的一般脫模方式,當(dāng)電機(jī)啟動后,點(diǎn)動調(diào)整,把滑塊調(diào)到上限位SQ1和頂缸調(diào)到上限位SQ5作為初始狀態(tài)位置。在此過程中狀態(tài)器S0S26全部復(fù)位。把選擇開關(guān)SA2旋轉(zhuǎn)到“工作”位置,準(zhǔn)備工作就緒。把選擇開關(guān)SA4旋轉(zhuǎn)到“浮動”一側(cè),把選擇開關(guān)SA3轉(zhuǎn)到“一般”一側(cè)。初始脈沖M8000驅(qū)動,置位S0后置位S10,復(fù)位S0。按壓雙手按扭,輔助繼電器M31得電驅(qū)動液壓閥YA1、YA3、YA5動作,滑塊快速下行。當(dāng)滑塊快速下行到SQ2位接近開關(guān)得電X016置1,置位S11,復(fù)位S10,輔助繼電器M32得電驅(qū)動液壓閥YA1、YA4、YA5動作,滑塊慢行預(yù)壓?;瑝K下行到SQ3,置位S12,復(fù)位S11,輔助繼電器M33得電驅(qū)動液壓閥YA1、YA5、YA10和YA12動作,進(jìn)行浮動壓制。當(dāng)主缸壓力達(dá)到極值或滑塊到達(dá)下限位SQ4后,置位S13復(fù)位S12。延時繼電器得電保壓延時,時間到置位S14復(fù)位S13,輔助繼電器M34得電驅(qū)動液壓閥YA2、YA9動作泄壓,同時延時繼電器T2得電延時,時間到置位S15復(fù)位S14,后置位S16復(fù)位S15,輔助繼電器M35得電驅(qū)動液壓閥YA1、YA6、YA9動作滑塊回程。當(dāng)滑塊達(dá)上限位SQ1后,置位S17復(fù)位S16,輔助繼電器M36得電驅(qū)動液壓閥YA1、YA7動作頂缸退回。頂缸達(dá)下限位SQ6后,置位S20復(fù)位S17,Y015得電驅(qū)動延時繼電器KT2得電手動取坯延時,時間到或是按壓雙手1和雙手2置位S21復(fù)位S20后置位S22再復(fù)位S21,輔助繼電器M39得電驅(qū)動液壓閥YA1、YA8、YA11動作頂缸頂出,頂缸達(dá)上限位SQ5后置位S24復(fù)位S22,手動加料轉(zhuǎn)到下一循環(huán)。若要完成半自動浮動壓制中的保護(hù)脫模方式,當(dāng)電機(jī)啟動后點(diǎn)動調(diào)整,把滑塊調(diào)到上限位SQ1和把頂缸調(diào)到下限位SQ5作為初始狀態(tài)位置。在此過程中狀態(tài)器S0S26全部復(fù)位。把選擇開關(guān)SA2旋轉(zhuǎn)到“工作”位置,準(zhǔn)備工作就緒。把選擇開關(guān)SA4旋轉(zhuǎn)到“浮動”一側(cè),把選擇開關(guān)SA3轉(zhuǎn)到“保護(hù)”一側(cè)。初始脈沖M8000驅(qū)動,置位S0后置位S10,復(fù)位S0。按壓雙手按扭,輔助繼電器M31得電驅(qū)動液壓閥YA1、YA3、YA5動作,滑塊快速下行。當(dāng)滑塊快速下行到SQ2位接近開關(guān)得電X016置1,置位S11,復(fù)位S10,輔助繼電器M32得電驅(qū)動液壓閥YA1、YA4、YA5動作,滑塊慢行壓制?;瑝K下行到SQ3,置位S12,復(fù)位S11,輔助繼電器M33得電驅(qū)動液壓閥YA1、YA5、YA10和YA12動作,進(jìn)行浮動壓制。當(dāng)主缸壓力達(dá)到極值或滑塊到達(dá)下限位SQ4后,置位S13復(fù)位S12。延時繼電器得電保壓延時,時間到置位S14復(fù)位S13,輔助繼電器M34得電驅(qū)動液壓閥YA2、YA9動作泄壓,同時延時繼電器T2得電延時,時間到置位S15復(fù)位S14,后置位S17復(fù)位S15,輔助繼電器M36得電驅(qū)動液壓閥YA1、YA7動作頂缸退回。當(dāng)頂缸退回達(dá)下限位SQ6后,置位S16復(fù)位S17,輔助繼電器M35得電驅(qū)動液壓閥YA1、YA6、YA9動作滑塊回程?;瑝K上行達(dá)上限位SQ1后,置位S20復(fù)位S16,Y015得電驅(qū)動延時繼電器KT2得電手動取坯延時,時間到或是按壓雙手1和雙手2置位S21復(fù)位S20后置位S22在復(fù)位S21,輔助繼電器M39得電驅(qū)動液壓閥YA1、YA8、YA11動作頂缸頂出,頂缸達(dá)上限位SQ5后置位S24復(fù)位S22,手動加料轉(zhuǎn)到下一循環(huán)。若要完成半自動單向壓制中的保護(hù)脫模方式,當(dāng)電機(jī)啟動后,點(diǎn)動調(diào)整,把滑塊調(diào)到上限位SQ1和頂缸調(diào)到下限位SQ6作為初始狀態(tài)位置。在此過程中狀態(tài)器S0S26全部復(fù)位。把選擇開關(guān)SA2旋轉(zhuǎn)到“工作”位置,準(zhǔn)備工作就緒。把選擇開關(guān)SA4旋轉(zhuǎn)到“單向”一側(cè),把選擇開關(guān)SA3轉(zhuǎn)到“保護(hù)”一側(cè)。初始脈沖M8000驅(qū)動,置位S0后置位S10,復(fù)位S0。按壓雙手按扭,輔助繼電器M31得電驅(qū)動液壓閥YA1、YA3、YA5動作,滑塊快速下行。當(dāng)滑塊快速下行到SQ2位接近開關(guān)得電X016置1,置位S11,復(fù)位S10,輔助繼電器M32得電驅(qū)動液壓閥YA1、YA4、YA5動作,滑塊慢行壓制。當(dāng)主缸壓力達(dá)到極值或滑塊達(dá)下限位SQ4后,置位S13復(fù)位S11。延時繼電器得電保壓延時,時間到置位S14復(fù)位S13,輔助繼電器M34得電驅(qū)動液壓閥YA2、YA9動作泄壓,同時延時繼電器T2得電延時,時間到置位S15復(fù)位S14,后置位S25復(fù)位S15,輔助繼電器M41得電驅(qū)動液壓閥YA1、YA8、YA9、YA10動作頂缸頂出,頂缸到達(dá)上限位SQ5后置位S26復(fù)位S25,輔助繼電器M42得電驅(qū)動液壓閥YA1、YA6、YA9動作滑塊回程,滑塊到達(dá)上限SQ1后置位S20復(fù)位S26,Y015得電驅(qū)動延時繼電器KT2得電手動取坯延時,時間到或是按壓雙手1和雙手2置位S21復(fù)位S20后置位S23復(fù)位S21,輔助繼電器M40得電驅(qū)動液壓閥YA1、YA7動作頂缸退回。頂缸達(dá)下限SQ6后,置位S24復(fù)位S23,手動加料轉(zhuǎn)到下一循環(huán)。6指令程序 步序指令說明1LD X0002AND M123OR X0054ANI X0155ANI M116ANI M31 7ANI M328OUT M12滑塊回程9OUT T3K1012LDI X00013ANI X00314AND X02315ANI M1216MC N0M1019LD X00420ANI X02021ANI X01422ANI M1223OUT M11滑塊慢下24LD X00625ANI X02126ANI M1427OUT M13頂缸頂出28LD X00729ANI X02230ANI M1331OUT M14頂缸退回32MCR N034LD M800035OUT TOK538LDI T039ORI X00040OR M1241OR X00342ZRST(FNC40)S0S26全部復(fù)位S20S2647LDI X02348ZRST(FNC40)S0S19全部復(fù)位S10S1953ZRST(FNC40)S21S26全部復(fù)位S21S2658LD X00059AND T060PLS M3062LD M3063SET S065STL S066LD X00267AND X02168LDI X00269AND X02270ORB71AND X01572SET S1074STL S1075LD X01076AND X01177OUT M31滑塊快下78LD X01680SET S1181STL S1182OUT M32滑塊慢下83LD X00284AND X01786SET S1287LDI X01488OR 02089AND X00290SET S1392STL S1293OUT M33浮動壓制94LD X01495OR X02096SET S1398STL S1399OUT Y014保壓100LD Y014101AND X012102SET S14104STL S14105OUT M34泄壓106OUT T2D8030109LD T2110SET S15112STL S15113LD X002114MPS115AND X001116SET S16118MPP119ANI X001120SET S17122LDI X002123MPS124AND X001125SET S18127MPP128ANI X001129SET S25130STL S16131OUT M35滑塊回程132LD X015133MPS134AND X001135SET S17137MPP138ANI X001139SET S20141STL S17142OUT M36頂缸退回143LD X022144MPS145AND X001146SET S20148MPP149ANI X001150SET S16152STL S18153OUT M37滑塊回程154LD X015155AND X001156SET S19158STL S19159OUT M38頂缸頂出160LD X021161AND X001162SET S20164STL S25165OUT M41頂缸頂出166LD X021167ANI X001168SET S26170STL S26滑塊回程171OUT M42172LD X015173ANI X001174SET S20176STL S20177OUT Y015178LD Y015179AND X013180OR X010181OR X011182SET S21184STL S21185LD X002186SET S22188LDI X002189SET S23191 第 18 頁 翻譯英文原文COMMINUTION IN A NON-CYLINDRICAL ROLL CRUSHER*P. VELLETRI and D.M. WEEDON Dept. of Mechanical & Materials Engineering, University of Western Australia, 35 Stirling Hwv,Crawley 6009, Australia. E-mail pieromech.uwa.edu.au Faculty of Engineering and Physical Systems, Central Queensland University, PO Box 1!:;19,Gladstone, Qld. 4680, Australia(Received 3 May 2001; accepted 4 September 2001)ABSTRACTLow reduction ratios and high wear rates are the two characteristics ntost commonh associated with conventional roll crushers. Because of this, roll crushers are not often considered Jor use in mineral processing circuits, attd many of their advantages are being largely overlooked. This paper describes a novel roll crusher that has been developed ipt order to address these issues.Relbrred to as the NCRC (Non-Cylindrical Roll Crusher), the new crusher incorporates two rolls comprised qf an alternating arrangement of platte attd convex or concave suwes. These unique roll prqfiles improve the angle qf nip, enabling the NCRC to achieve higher reduction ratios than conventional roll crushers. Tests with a model prototype have indicated thar evell fi)r very hard ores, reduction ratios exceeding lO:l can be attained. In addition, since the comminution process in the NCRC combines the actions of roll arM jaw crushers there is a possibili O that the new profiles may lead to reduced roll wear rates. 2001 Elsevier Science Ltd. All rights reserved.Keywords: Comminution; crushingINTRODUCTIONConventional roll crushers suffer from several disadvantages that have lcd to their lack of popularity in mineral processing applications. In particular, their low reduction ratios (typically limited to about 3:1) and high wear rates make them unattractive when compared to other types of comminution equipment, such ascone crushers. There are, however, some characteristics of roll crushers that are very desirable from a mineral processing point of view. The relatively constant operating gap in a roll crusher gives good control over product size. The use of spring-loaded rolls make these machines tolerant to uncrushable material (such as tramp metal). In addition, roll crushers work by drawing material into the compression region between the rolls and do not rely on gravitational feeci like cone and jaw crushers. This generates a continuous crushing cycle, which yields high throughput rates and also makes the crusher capable of processing wet and sticky ore. The NCRC is a novel roll crusher that has been dcveloped at the University of Western Australia in ordcr to address some of the problems associated with conventional roll crushers. The new crusher incorporates tworolls comprised of an alternating arrangement of plane and convex or concave surfaccs. Thcse unique roll profiles improve the angle of nip, enabling the NCRC to achieve higher reduction ratios than conventional roll crushers. Preliminary tests with a model prototype have indicated that, even for very hard oics,reduction ratios exceeding 10:I can be attained (Vellelri and Weedon, 2000). These initial findings were obtained for single particle feed. where there is no significant interaction between particles during comminution. The current work extends the existing results bv examining inulti-particle comminution inthe NCRC. It also looks at various othcr factors that influencc the perlirmance of the NCRC and exploresthe effectiveness of using the NCRC for the processing of mill scats.PRINCIPLE OF OPERATIONThe angle of nip is one of the main lectors effccting the performance of a roll crusher. Smaller nip anglesare beneficial since they increase tle likelihood of parlictes bcing grabbed and crushed by lhe rolls. For agiven feed size and roll gap, the nip angle in a conventional rtHl crusher is limited by the size of thc rolls.The NCRC attempts to overcome this limitation through the use of profiled rolls, which improve the angleof nip at various points during one cycle (or revolution) of the rolls. In addition to the nip angle, a numberof other factors including variation m roll gap and mode of commmution were considered when selectingIlle roll profiles. The final shapes of the NCRC rolls are shown in Figure I. One of the rolls consists sI analternating arrangement of plane and convex surfaces, while the other is formed from an alternatingarrangement of phme and concave surlaccs.The shape of the rolls on the NCRC result in several unique characteristics. Tile most important is that, lk)ra given particle size and roll gap, the nip angle generated m the NCRC will not remain constant as the rollsrotate. There will be times when the nip angle is much lower than it would be for the same sized cylindricalrolls and times when it will be much highcr. The actual variation in nip angle over a 60 degree roll rotationis illustrated in Figure 2, which also shows the nip angle generated under similar conditions m a cylindricalroll crusher of comparable size. These nip angles were calculated for a 25ram diameter circular particlebetween roll of approximately 200ram diameter set at a I mm minimum gap. This example can be used toillustrate the potential advantage of using non-cylindrical rolls. In order for a particle to be gripped, thcangle of nip should normally not exceed 25 . Thus, the cylindrical roll crusher would never nip thisparticle, since the actual nip angle remains constant at approximately 52 . The nip angle generated by theNCRC, however, tidls below 25 once as the rolls rotate by (0 degrees. This means that the non-cylindricalrolls have a possibility of nipping the particlc 6 times during one roll rewHution.EXPERIMENTAL PROCEDUREThe laboratory scale prototype of the NCRC (Figure 3) consists of two roll units, each comprising a motor,gearbox and profiled roll. Both units are mounted on linear bearings, which effectively support any verticalcomponcnt of force while enabling horizontal motion. One roll unit is horizontally fixed while the other isrestrained via a compression spring, which allows it to resist a varying degree of horizontal load.The pre-load on the movable roll can be adjusted up to a maximum of 20kN. The two motors that drive therolls are electronically synchronised through a variable speed controller, enabling the roll speed to becontinuously varied up to 14 rpm (approximately 0.14 m/s surface speed). The rolls have a centre-to-centredistance ,at zero gap setting) of I88mm and a width of 100mm. Both drive shafts are instrumented withstrain gauges to enable the roll torque to be measured. Additional sensors are provided to measure thehorizontal force on the stationary roll and the gap between the rolls. Clear glass is fitted to the sides of theNCRC to facilitate viewing of the crushing zonc during operation and also allows the crushing sequence tobc recorded using a high-speed digital camera.Tests were performed on several types of rocks including granite, diorite, mineral ore, mill scats andconcrete. The granite and diorite were obtained from separate commercial quarries; the former had beenpre-crushed and sized, while the latter was as-blasted rock. The first of the ore samples was SAG mill feedobtained from Normandy Minings Golden Grove operations, while the mill scats were obtained fromAurora Golds Mt Muro mine site in central Kalimantan. The mill scats included metal particles of up to18ram diameter from worn and broken grinding media. The concrete consisted of cylindrical samples(25mm diameter by 25ram high) that were prepared in the laboratory in accordance with the relevantAustralian Standards. Unconfined uniaxial compression tests were performed on core samples (25mmdiameter by 25mm high) taken from a number of the ores. The results indicated strength ranging from 60MPa for the prepared concrete up to 260 MPa for the Golden Grove ore samples.All of the samples were initially passed through a 37.5mm sieve to remove any oversized particles. Theundersized ore was then sampled and sieved to determine the feed size distribution. For each trialapproximately 2500g of sample was crushed in the NCRC. This sample size was chosen on the basis ofstatistical tests, which indicated that at least 2000g of sample needed to be crushed in order to estimate theproduct P80 to within +0.1ram with 95% confidence. The product was collected and riffled into ten subsamples,and a standard wet/dry sieving method was then used to determine the product size distribution.For each trial, two of the sub-samples were initially sieved. Additional sub-samples were sieved if therewere any significant differences in the resulting product size distributions.A number of comminution tests were conducted using the NCRC to determine the effects of variousparameters including roll gap, roll force, feed size, and the effect of single and multi-particle feed. The rollspeed was set at maximum and was not varied between trials as previous experiments had concluded thatthere was little effect of roll speed on product size distribution. It should be noted that the roll gap settingsquoted refer to the minimum roll gap. Due to the non-cylindrical shape of the rolls, the actual roll gap willvary up to 1.7 mm above the minimum setting (ie: a roll gap selling of l mm actually means 1-2.7mm rollgap).RESULTSFeed materialThe performance of all comminution equipment is dependent on the type of material being crushed. In thisrespect, the NCRC is no different. Softer materials crushed in the NCRC yield a lower P80 than hardermaterials. Figure 4 shows the product size distribution obtained when several different materials werecrushed under similar conditions in the NCRC. It is interesting to note that apart from the prepared concretesamples, the P80 values obtained from the various materials were fairly consistent. These results reflect thedegree of control over product size distribution that can be obtained with the NCRC.Multiple feed particlesPrevious trials with the NCRC were conducted using only single feed particles where there was little or nointeraction between particles. Although very effective, the low throughput rates associated with this modeof comminution makes it unsuitable for practical applications. Therefore it was necessary to determine theeffect that a continuous feed would have to the resulting product size distribution. In these tests, the NCRCwas continuously supplied with feed to maintain a bed of material level with the top of the rolls. Figure 5shows the effect that continuous feed to the NCRC had on the product size distribution for the NormandyOre. These results seem to show a slight increase in P80 with continuous (multi-particle) feed, however theshift is so small as to make it statistically insignificant. Similarly, the product size distributions would seemto indicate a larger proportion of fines for the continuously fed trial, but the actual difference is negligible.Similar trials were also conducted with the granite samples using two different roll gaps, as shown inFigure 6. Once again there was little variation between the single and multi-particle tests. Not surprisingly,the difference was even less significant at the larger roll gap, where the degree of comminution (and henceinteraction between particles) is smaller.All of these tests would seem to indicate that continuous feeding has minimal effect on the performance ofthe NCRC. However, it is important to realise that the feed particles used in these trials were spread over avery small size range, as evident by the feed size distribution shown in Figure 6 (the feed particles in theNormandy trials were even more uniform). The unilormity in feed particle size results in a large amount offree space, which allow:s for swelling of the broken ore in the crushing chamber, thereby limiting theamount of interaction between particles. True choke feeding of the NCRC with ore having a widedistribution of particle sizes (especially in the smaller size range) is likely to generate much larger pressuresin the crushing zone. Since the NCRC is not designed to act as a high pressure grinding roll a largernumber of oversize particles would pass between the rolls under these circumstances.Roll gapAs with a traditional roll crusher, the roll gap setting on the NCRC has a direct influence on the productsize distribution and throughput of the crusher. Figure 7 shows the resulting product size distributionobtained when the Aurora Gold ore (mill scats) was crushed at three different roll gaps. Plotting the PSOvalues taken from this graph against the roll gap yields the linear relationship shown in Figure 8. Asexplained previously, the actual roll gap on the NCRC will vary over one revolution. This variationaccounts for the difference between the specified gap setting and product Ps0 obtained from the crushingtrials. Figure 8 also shows the effect of roll gap on throughput of the crusher and gives an indication of thecrushing rates that can be obtained with the laboratory scale model NCRC.Roll forceThe NCRC is designed to operate with minimal interaction between particles, such that comminution isprimarily achieved by fracture of particles directly between the rolls. As a consequence, the roll force onlyneeds to bc large enough to overcome the combined compressive strengths of the particles between the rollsurlaces. If the roll force is not large enough then the ore particles will separate the rolls allowing oversizedparticles to lall through. Increasing the roll force reduces the tendency of the rolls to separate and thereforeprovides better control over product size. However, once a limiting roll force has been reached (which isdependent on the size and type of material being crushed) any further increase in roll force adds nothing tothe performance of the roll crusher. This is demonstrated in Figure 9, which shows that for granite feed of25-3 Imm size, a roll force of approximately 16 to 18 kN is required to control the product size. Using alarger roll force has little effect on the product size, although there is a rapid increase in product P80 if theroll force is reduced bekw this level.As mentioned previously, the feed size distribution has a significant effect on the pressure generated in thecrushing chamber. Ore that has a finer feed size distribution tends to choke the NCRC more, reducing theeffectiveness of the crusher. However, as long as the pressure generated in not excessive the NCRCmaintains a relatively constant operating gap irrespective of the feed size. The product size distributionwill, therefore, also bc independent of the feed size distribution. This is illustrated in Figure 10, whichshows the results of two crushing trials using identical equipment settings but with feed ore havingdifferent size distributions. In this example, the NCRC reduced the courser ore from an Fs0 of 34mm to aPs0 of 3.0mm (reduction ratio of 11:1), while the finer ore was reduced from an Fs0 of 18mm to a Pso of3.4mm (reduction ratio of 5:1). These results suggest that the advantages of using profiled rolls diminish asthe ratio of the feed size to roll size is reduced. In other words, to achieve higher reduction ratios the feedparticles must be large enough to take advantage of the improved nip angles generated in the NCRC.Mill scatsSome grinding circuits employ a recycle or pebble crusher (such as a cone crusher) to process materialwhich builds up in a mill and which the mill finds hard to break (mill scats). The mill scats often containworn or broken grinding media, which can find its way into the recycle crusher. A tolerance to uncrushablematerial is therefore a desirable characteristic for a pebble crusher to have. The NCRC seems ideally suitedto such an application, since one of the rolls has the ability to yield allowing the uncrushable material topass through.The product size distributions shown in Figure 1 1 were obtained from the processing of mill scats in theNCRC. Identical equipment settings and feed size distributions were used for both results, however one ofthe trials was conducted using feed ore in which the grinding media had been removed. As expected, theNCRC was able to process the feed ore containing grinding media without incident. However, since oneroll was often moving in order to allow the grinding media to pass, a number of oversized particles wereable to fall through the gap without being broken. Consequently, the product size distribution for this feedore shows a shift towards the larger particle sizes, and the Ps0 value increases from 4ram to 4.7mm. In spiteof this, the NCRC was still able to achieve a reduction ratio of almost 4:1.WearAlthough no specific tesls were conducted to determine the wear rates on the rolls of the NCRC, a numberof the crushing trials were recorded using a high-speed video camera in order to try and understand thecomminution mechanism. By observing particles being broken between the rolls it is possible to identifyportions of the rolls which are likely to suffer from high wear and to make some subjective conclusions asto the effect that this wear will have on the perlbrmance of the NCRC. Not surprisingly, the region thatshows up as being the prime candidate for high wcar is the transition between the flat and concave surfaces.What is surprising is that this edge does not play a significant role in generating the improved nip angles.The performance of the NCRC should not be adversely effccted by wear to this edge because it is actuallythe transition between the fiat and convex surfaces (on the opposing roll) that results in the reduced nipangles.The vide() also shows that tor part of each cycle particles are comminuted between the flat surfaces of therolls, in much the same way as they would be in a jaw crusher. This can be clearly seen on the sequence ofimages in Figure 12. The wear on the rolls during this part of the cycle is likely to be minimal since there islittle or no relative motion between the particles and the surface of the rolls.CONCLUSIONSThe results presented have demonstrated some of the factors effecting the comminution of particles in anon-cylindrical roll crusher. The high reduction ratios obtained from early single particle tests can still beachieved with continuous multi-particle feed. However, as with a traditional roll crusher, the NCRC issusceptible to choke feeding and must be starvation fed in order to operate effectively. The type of feedmaterial has little effect on the performance of the NCRC and, although not tested, it is anticipated that themoisture content of the feed ore will also not adversely affect the crushers perBrmance. Results from themill scat trials are particularly promising because they demonstrate that the NCRC is able to process orecontaining metal from worn grinding media. The above factors, in combination with the flaky nature of theproduct generated, indicate that the NCRC would make an excellent recycle or pebble crusher. It wouldalso be interesting to determine whether there is any difference in the ball mill energy required to grindproduct obtained from the NCRC compared that obtained from a cone crusher.中文譯文摘要 低的破碎比和高的磨損率是與傳統(tǒng)的破碎機(jī)相聯(lián)系的很常見的兩個特性。因?yàn)檫@點(diǎn),在礦石處理流程的應(yīng)用中,很少考慮到它們,并且忽略了很多它們的優(yōu)點(diǎn)。本文描述了一個已被發(fā)展起來的新穎的對輥破碎機(jī),旨在提出這些論點(diǎn)。作為NCRC,這種新式破碎機(jī)結(jié)合了兩個輥筒,它們由一個交替布置的平面和一個凸的或者凹的表面組成。這種獨(dú)特的輥筒外形提高了嚙合角,使NCRC可以達(dá)到比傳統(tǒng)輥式破碎機(jī)更高的破碎比。用一個模型樣機(jī)做的試驗(yàn)表明:即使對于非常硬的礦石,破碎比任可以超過10。另外,既然在NCRC的破碎處理中結(jié)合了輥式和顎式破碎機(jī)的作用,那就有一種可能:那種新的輪廓會帶來輥?zhàn)幽p率的降低。關(guān)鍵字:介紹傳統(tǒng)的輥筒破碎機(jī)因?yàn)榫哂袔讉€缺陷而導(dǎo)致了其在礦石處理應(yīng)用中的不受歡迎。尤其是當(dāng)與其它的一些破碎機(jī)比起來,諸如圓錐破碎機(jī)等,它們的低破碎比(一般局限在3以內(nèi))和高的磨損率使它們沒
收藏