2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修4.doc
《2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修4.doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修4.doc(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1.1.2 弧度制 學(xué)習(xí)目標(biāo) 1.理解角度制與弧度制的概念,能對弧度和角度進(jìn)行正確的轉(zhuǎn)換(重點(diǎn)).2.體會引入弧度制的必要性,建立角的集合與實數(shù)集的一一對應(yīng)關(guān)系.3.掌握并能應(yīng)用弧度制下的弧長公式和扇形面積公式(重、難點(diǎn)). 知識點(diǎn)1 弧度制 1.度量角的兩種制度 角度制 定義 用度作為單位來度量角的單位制 1度的角 周角的為1度的角,記作1 弧度制 定義 以弧度為單位來度量角的單位制 1弧度 的角 長度等于半徑長的弧所對的圓心角叫做1弧度的角.1弧度記作1 rad 2.弧度數(shù)的計算 (1)正角:正角的弧度數(shù)是一個正數(shù). (2)負(fù)角:負(fù)角的弧度數(shù)是一個負(fù)數(shù). (3)零角:零角的弧度數(shù)是0. (4)如果半徑為r的圓的圓心角α所對弧的長為l,那么,角α的弧度數(shù)的絕對值是|α|=. 3.角度制與弧度制的換算 角度化弧度 弧度化角度 360=2π_rad 2π rad=360 180=π_rad π rad=180 1= rad≈0.017 45 rad 1 rad=()≈57.30 度數(shù)=弧度數(shù) 弧度數(shù)()=度數(shù) 【預(yù)習(xí)評價】 (正確的打“√”,錯誤的打“”) (1)1弧度就是1的圓心角所對的?。? ) (2)“1弧度的角”的大小和所在圓的半徑大小無關(guān).( ) (3)160化為弧度制是π rad.( ) 提示 (1),1弧度是長度等于半徑的弧所對的圓心角. (2)√,“1弧度的角”的大小等于半徑長的圓弧所對的圓心角,是一個定值,與所在圓的半徑大小無關(guān). (3)√,160=160 rad=π rad. 知識點(diǎn)2 扇形的弧長及面積公式 設(shè)扇形的半徑為R,弧長為l,α(0<α<2π)為其圓心角,則 度量單位類別 α為角度制 α為弧度制 扇形的弧長 l= l=αR 扇形的面積 S= S=lR?。溅罵2 【預(yù)習(xí)評價】 圓的半徑是6 cm,則圓心角為15的扇形面積是________. 解析 因為15=,所以面積S=αR2=36=π(cm2). 答案 π(cm2) 題型一 角度與弧度的互化及應(yīng)用 【例1】 將下列角度與弧度進(jìn)行互化: (1)20;(2)-800;(3);(4)-π. 解 (1)20=20=; (2)-800=-800=-π; (3)=()=105; (4)-π=-(π)=-144. 規(guī)律方法 角度制與弧度制互化的原則和方法 (1)原則:牢記180=π rad,充分利用1= rad和1 rad=()進(jìn)行換算. (2)方法:設(shè)一個角的弧度數(shù)為α,角度數(shù)為n,則α rad=α();n=n. 【訓(xùn)練1】 (1)把11230′化成弧度; (2)把-化成度. 解 (1)11230′=()==. (2)-=-()=-75. 題型二 用弧度制表示角的集合 【例2】 用弧度表示頂點(diǎn)在原點(diǎn),始邊重合于x軸的非負(fù)半軸,終邊落在陰影部分內(nèi)的角的集合(不包括邊界,如圖). 解 (1)以O(shè)A為終邊的角為+2kπ(k∈Z),以O(shè)B為終邊的角為-+2kπ(k∈Z),所以陰影部分(不包括邊界)內(nèi)的角的集合為{α|-+2kπ<α<+2kπ,k∈Z}. (2)終邊落在陰影部分(不含邊界)的角的集合是{α|+2kπ<α<+2kπ,k∈Z}. 規(guī)律方法 根據(jù)已知圖形寫出區(qū)域角的集合的步驟 (1)仔細(xì)觀察圖形. (2)寫出區(qū)域邊界作為終邊時角的表示. (3)用不等式表示區(qū)域范圍內(nèi)的角. 【訓(xùn)練2】 已知角α=2 010. (1)將α改寫成β+2kπ(k∈Z,0≤β<2π)的形式,并指出α是第幾象限的角; (2)在區(qū)間[-5π,0)上找出與α終邊相同的角. 解 (1)2 010=2 010==52π+, 又π<<, ∴α與終邊相同,是第三象限的角. (2)與α終邊相同的角可以寫成γ=+2kπ(k∈Z), 又-5π≤γ<0, ∴當(dāng)k=-3時,γ=-π; 當(dāng)k=-2時,γ=-π; 當(dāng)k=-1時,γ=-π. 題型三 扇形的弧長公式及面積公式的應(yīng)用 【例3】 已知一個扇形的周長為a,求當(dāng)扇形的圓心角多大時,扇形的面積最大,并求這個最大值. 解 設(shè)扇形的弧長為l,半徑為r,圓心角為α,面積為S.由已知,2r+l=a,即l=a-2r. ∴S=lr=(a-2r)r=-r2+r =-2+. ∵r>0,l=a-2r>0,∴0- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修4 2018 2019 學(xué)年 高中數(shù)學(xué) 1.1 弧度 制學(xué)案 新人 必修
鏈接地址:http://m.appdesigncorp.com/p-6223875.html