永城市新莊礦1.50Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip
永城市新莊礦1.50Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip,永城市,新莊,1.50,Mta,設(shè)計(jì),CAD,采礦工程
英文原文Numerical Simulation of Coal Floor Fault Activation Influenced by Mining WANG Lian-guo,MIAO Xie-xingSchool of Sciences,China University of Mining&Technology,Xuzhou,Jiangsu 221008,ChinaAbstract:By means of the numerical simulation software ANSYS,the activation regularity of coal floor faults caused by mining is simulated.The results indicate that the variation in horizontal,vertical and shear stresses,as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identical.Influenced by mining of the floor rock,there are stress releasing and stress rising areas at the upper part and at the footwall of the fault.The distribution of stress is influenced by the fault so that the stress isolines are staggered by the fault face and the stress is focused on the rock seam around the two ends of the fault.But the influence in fault activation on the upper or the lower fault blocks of the workface is markedly different.When the workface is on the footwall of the fault,there is a horizontal tension stress area on the upper part of the fault;when the workface is on the upper part of the fault,it has a horizontal compressive stress area on the lower fault block.When the workface is at the lower fault block,the maximum vertical displacement is 5 times larger then when the workface is on the upper fault block,which greatly increases the chance of a fatal inrush of water from the coal floor.Key words:mining;fault activation;simulation1 IntroductionIn this paper we attempt to appraise the activation regularity and deformation of coal floor faults caused by mining.Damage mechanisms of rock around coal floor faults are described from different aspects and in different contexts110.Descriptions can,to some extent,intensify our understanding of coal floor fault activation caused by mining.However, looking at the effect of these views,a mechanical analysis cannot achieve the purpose of pictures and clarity.For a more profound understanding of the regularity of fault activation caused by mining at the workface,we use computers to make numerical simulations and obtain a series of valuable conclusions. 2 Numerical Calculation of Model FormationConsidering the different fault activations influenced by the workface on the upper and lower fault blocks,we build two calculation models according to the state of the plane strain.Fig.1 is a calculation model(Model)of the workface on the lower fault block,showing the loading on the top of the terrane according to the distributional characteristics11 of mine pressure.Given the conditions of mining technology of the Qinan mine,the terrane 70 m fore- and-aft the workface and 30 m deep under the coal floor is simulated.The lithology of the floor is Berea sandstone and the elastic modulus E=1.09104MPa,the Poissons ratio=0.34,the cohesion C=2.94MPa,the internal friction angle=35 and the density=2.5 kN/m3.The calculation model of the workface on the upper part of the fault(Model)is the same as that of Modelexcept that the abutment pressure ahead of the workface is on the upper part of the fault.3 Numerical Simulation Results and AnalysisFor both models,the isoline graphs of horizontal, vertical and shear stresses as well as the horizontal and vertical displacements of modelsandhave been calculated and are plotted respectively as Figs.23. 3.1 Distribution characteristics of horizontal stressesInfluenced by mining of the coal floor rock, there are horizontal stress releasing areas and rising areas at the upper part and at the footwall of the fault. The distribution of horizontal stresses is influenced by the fault and it is obvious that the stress isolines are staggered by the fault face and the stress is concentrated on the rock seam around the two ends of the fault. In model I,stress is concentrated at the shallow part of the orebody at the footwall of the fault.The horizontal stress is 6.410 MPa.The horizontal stress under the fault face is 3.14.9 MPa.The lower part of mined-out areas on the lower fault block releases pressure,and may even turn to tension stress of about 0.5 MPa.But in the deeper part,the horizontal stress turns to compressive stress and the value increases gradually. In model,the stress is concentrated at the lower part of the orebody on the lower fault block and the horizontal stress becomes 14.627.5 MPa.The horizontal stress under the fault face is 4.948.16 MPa.The lower part of the mined-out areas at the fault footwall releases pressure;the horizontal stress is 4.94 MPa. 3.2 Distributional characteristics of vertical stressesThe distributions of vertical stresses are also influenced by faults.The stress isolines are staggered by the fault face.The stress is focused on the rock seam round the two ends of the fault. In model I,the stress is concentrated at the lower part of the orebody on the lower fault block.When the depth increases,the extent of the stress concentration in the rock under the coal bed decreases.The vertical stresses of the rock under the coal bed step down from 29.8 MPa to 18.7 MPa.The extent of the release at the upper part of mined-out areas reduces gradually and the vertical stresses increase from 1.5 MPa to 8.6 MPa.The vertical stresses at the footwall of the fault face increase from 8.6 MPa to 15.4 MPa. In model,the stress is concentrated at the lower part of the orebody on the lower fault block. When the depth increased,the concentration of stress in the rock under the coal bed decreased.The vertical stresses of the rock under the coal bed step down from 47.1 MPa to 13.5 MPa.The extent of the release of the footwall mined-out areas gradually reduces and the vertical stresses increase from 2.33 MPa to 7.92 MPa.The vertical stress at the footwall of fault face is 13.5 MPa.3.3 Distributional characteristics of shear stressesThe distribution of shear stresses at the upper part and the footwall of the fault are obviously different.The distributional characteristics of shear stress isolines are in conflict and the shear stresses are concentrated at the two ends of the fault.Inmodel,the stresses under the fault face evolve from compressive shear stress to tension shear stress.Its value ranges from5.4 MPa to0.3 MPa (the minus sign means compressive stress and the positive sign means tension stress).The tension at the upper fault block face of the shear stress area has a value of 0.3 MPa in the shallow part which gradually increases to 2.56 MPa in the deeper part. In model,the stress above the fault face changed from tension shear stress to compressive shear stress and the values ranged from6.6 MPa to 11.6 MPa (again,the minus sign means compressive stress and the positive sign tension stress).The upper part of the fault face is a tension shear stress area and the value gradually reduces from 4.99 MPa to 0.57 MPa. 3.4 Horizontal displacement In model,the horizontal compressive displacement on the lower fault block is small;its value is 0.35.6 mm.The horizontal compressive displacement at the fault footwall is large.The maximum value is 42.6 mm,but this falls gradually to 0.3 mm with increasing depth. In model,the horizontal tension displacement of the coal floor at the upper part of the fault ranges from 1.3 mm to 10.9 mm.The deep horizontal compressive displacement is small,ranging from 0.3 mm to 1.9 mm.The horizontal tension displacement at the footwall of the fault is between 1.3 and 10.9 mm.3.5 Vertical displacementJust as in the foregoing description,during mining,vertical stresses loading on the rock floor will change.At a time,from the front of the coal wall to the mined-out area,advancing in the direction along the workface supporting pressure areas,release pressure areas and stress resuming areas will arise.Related to this development,the rock of the coal floor may become a compressive area,an expanding area and a re-compressive area.The displacement of the rock on the coal floor reduces with increasing depth.In model,the displacement of the compressive area at the fault footwall reduces from 21.4 mm in the shallow end to 8.2 mm in the deep end and the displacement of the expanding area in upper part reduces from 84 mm to 4.9 mm going from the shallow to the deep end. In model,the displacement of the compressive area at the fault footwall reduces from 34.17 mm at the shallow end to 3.88 mm at the deep end and the displacement of the expanding area in the upper part reduces from 14.29 mm at the shallow part to 2.17 mm in the deeper part. 4 ConclusionsGiven the calculations in our analysis,the following inferences can be drawn:1)Influenced by mining of the floor rock,horizontal stress releasing areas and rising areas at the upper part and at the footwall of the fault develop. The distributions of horizontal stresses are influenced by the fault as indicated by the stress isolines which are staggered at the fault face and the stress is focused on the rock seam around the two ends of the fault.2)The distribution of vertical stresses are also influenced by the fault that as shown by the stress isolines,staggered at the fault face and the stress is concentrated at the rock seam around the two ends of the fault.3)The distribution of shear stresses at the upper part and the footwall of the fault are also obviously different.The shear stresses concentrate at the two ends of the fault.4)When the workface is at the footwall of the fault,there is a horizontal tension stress area on the upper part of the fault;when the workface is on the upper part of the fault,it has a horizontal compressive stress area at the lower fault block. 5)When the workface is on the lower fault block,the maximum vertical displacement is 5 times larger than that at the upper fault block,which very much increases the chance of a fatal inrush of water from the coal floor.References1Gao Y F,Shi L Q,Lou H J,et al.Water-Inrush Regularity and Water-Inrush Preferred Plane of Coal Floor.Xuzhou:China University of Mining&Technology Publishing House,1999.(In Chinese)2Qian M G,Miao X X,XU J L.The Key Strata Theory of Controlling the Rock Seam.Xuzhou:China University of Mining &Technology Publishing House,2000.(In Chinese)3Zhang J C,Zhang Y Z,Liu T Q.The Seepage Flow in Rock and the Water Inrush in Coal Floor.Beijing:Geological Publishing House,1997.(In Chinese)4Wang L G,Song Y.The Non-Linear Characteristic and the Forecast of Water Inrush from Coal Floor.Beijing:Coal Industry Press,2001.(In Chinese)5Gong S G.The Basic Application and Example Analysis of ANSYS.Beijing:Machine Press,2003.(In Chinese)6Li H Y,Zhou T P,Liu X X.The Tutorial of Engineering Application of ANSYS.Beijing:China Railway Press,2003.(In Chinese)7Wang L G,Song Y.A model to risk assessment for mine water-inrush.Journal of Engineering Geology,2001,09(02):158163.8Miao X X,Lu A H,Mao X B,et al.Numerical simulation for roadways in swelling rock under coupling function of water and ground pressure.Journal of China University of Mining&Technolog,2002,12(2):121125.9Wang L G,Bi S J,Song Y.Numerical simulation research on law of deformation and breakage of coal floor.Group Pressure and Strate Control,2004,(4):3537.(In Chinese)10Wang L G,Song Y,Miao X X.Study on prediction of water-inrush from coal floor based on cusp catastrophic model.Chinese Journal of Rock Mechanics and Engineering,2003,22(4):573577.11Jiang J Q.The Stress and the Movement of the Rock Around the Stope.Beijing:Coal Industry Press,1997.(In Chinese)中文譯文采礦對煤層底板斷層活化影響的數(shù)值模擬王連國,繆協(xié)興中國礦業(yè)大學(xué),理學(xué)院,中國,江蘇,徐州221008 摘要:利用數(shù)值模擬軟件ANSYS ,模擬采礦引起的底板斷層活化規(guī)律。結(jié)果表明,工作面在斷層上帶和下帶時(shí),橫向、縱向和剪應(yīng)力的變化,以及水平和垂直位移幾乎一樣的。因采礦地面巖石影響,在斷層的上帶和下帶有應(yīng)力降低和壓力上升的地區(qū)。應(yīng)力分布的影響,這樣的斷層的壓力等值線的交錯(cuò)面臨的過失和強(qiáng)調(diào)的是集中在巖層周圍的兩端。但是斷層的影響,活化的上部或下部斷塊的工作面明顯不同.當(dāng)工作面在斷層的下帶,有一個(gè)橫向拉應(yīng)力區(qū)的在斷層的上帶;當(dāng)工作面是在斷層上帶,它有一個(gè)壓應(yīng)力水平較低的地區(qū)的工作面斷層塊。當(dāng)工作面在斷層下帶,最大垂直位移比工作面在斷層上帶大5倍,這樣極大地增大致命的底板突水機(jī)會。關(guān)鍵詞:采礦;斷層活化;模擬1簡介在本文中,我們試圖評價(jià)受煤層底板的斷層活化規(guī)律和變形。損害機(jī)制所造成的巖石煤層底板斷層周圍描述來自不同方面和在不同情況。說明可以在一定程度上加強(qiáng)我們的理解采礦影響煤層底板斷層活化.然而,從這些觀點(diǎn)的考慮,機(jī)械分析無法實(shí)現(xiàn)的預(yù)期的目的.為了更深刻的理解受工作面影響斷層活化規(guī)律,我們使用計(jì)算機(jī),從而使數(shù)值模擬試驗(yàn),并獲得了一系列有價(jià)值的結(jié)論。2數(shù)值計(jì)算模型的形成考慮到工作面在斷層上下帶位子不同的影響斷層活化,我們建立兩個(gè)數(shù)字模型通過不同拉伸狀態(tài).圖1是一個(gè)數(shù)值模型(模型)的工作面下帶,顯示的負(fù)荷上方的巖層根據(jù)礦山壓力的分布特征.基于現(xiàn)在采礦技術(shù)學(xué)條件祁南煤礦,模擬工作面前70米和縱向的和30米深的煤層底板.底板的巖性是貝雷亞砂巖的彈性模量E = 1.09 104MPa時(shí),泊松比 = 0.34 ,凝聚力 = 2.94MPa時(shí),內(nèi)摩擦角 = 35和容重 = 2.5 kN/m3。工作面在斷層上帶數(shù)值模型(模式 )和模型是一樣的,但前面的支承壓力是在工作面是在斷層上帶的情況下。圖1 計(jì)算模型3數(shù)值模擬結(jié)果與分析(一)等值的水平應(yīng)力(二)等值線垂直應(yīng)力(三)剪應(yīng)力等值線(四)等值線水平位移(五)垂直位移等值線圖2 模型的計(jì)算結(jié)果對于這兩種模型,等值線圖的水平,縱向和剪應(yīng)力以及橫向和垂直位移的模型 , 計(jì)算和繪制分別為圖2-3。3.1橫向應(yīng)力分布特征(一)等值的水平應(yīng)力(二)等值線垂直應(yīng)力(三)剪應(yīng)力等值線(四)等值線水平位移(五)垂直位移等值線圖3 模型的計(jì)算結(jié)果 受開采的煤層底板巖石影響,有水平應(yīng)力降低區(qū)域和不斷上升的斷層上帶。受斷層影響分配的橫向應(yīng)力,很明顯,應(yīng)力等值線是錯(cuò)開的斷層所面臨的壓力是聚集在斷層巖層周圍的兩端。在模型,強(qiáng)調(diào)的是集中在淺水部分礦體上帶.水平應(yīng)力是6.4-10 MPa. 在斷層面得水平應(yīng)力3.1至4.9MPa。下部采空區(qū)的低斷塊降低壓力,甚至可能反過來向拉應(yīng)力約0.5 MPa。在更深的部分,水平應(yīng)力和壓應(yīng)力輪流逐漸增加。在模式 ,應(yīng)力集中在下部礦體低斷塊和橫向應(yīng)力成為14.6-27.5 MPa。水平應(yīng)力下的斷裂面是4.94-8.16MPa。下部采空區(qū)的斷層降低壓力;橫向應(yīng)力是4.94MPa。3.2垂直應(yīng)力分布特征垂直應(yīng)力分布也受到斷層的影響。壓力等值線的交錯(cuò)由斷層面.應(yīng)力集中在煤層下的斷層兩端。在模型中,應(yīng)力是集中在較低的部分礦體低斷層。當(dāng)深度的增加,度在巖石下的應(yīng)力聚集程降低.垂直應(yīng)力條件下巖石煤層步驟從29.8MPa的18.7 MPa.The程度釋放在上部采空區(qū)減少逐步和垂直應(yīng)力增加1.5強(qiáng)度為8.6 MPa.The垂直強(qiáng)調(diào)在帶故障面對增加8.6MPa至15.4MPa。在模式 ,應(yīng)力集中在下部礦體低斷塊。當(dāng)深度增加,煤床下的巖石垂直應(yīng)力集中在47.1 MPa到13.5 MPa.在斷層下帶垂直應(yīng)力增長從2.33 MPa提高7.92 MPa.垂直應(yīng)力在斷層下帶為13.5 MPa。3.3剪應(yīng)力的分布特征在斷層上下帶的剪切應(yīng)力的分布式明顯不同的,剪切應(yīng)力等值線是沖突的,和集中在斷層兩端剪切應(yīng)力相比。模型 ,壓力下面臨斷層演變從壓剪應(yīng)力的張應(yīng)力。值范圍從- 5.4MPa至-0.3MPa(減號指壓應(yīng)力和積極的跡象意味著拉應(yīng)力) 。在上斷塊面的張應(yīng)力對剪應(yīng)力地區(qū)有價(jià)值0.3MPa的淺層部分,逐步提高到2.56MPa的更深的一部分。在模式的應(yīng)力面對上述故障從緊張到壓剪應(yīng)力剪應(yīng)力和價(jià)值不等, 6.6MPa,以-11.6MPa(再次,減號指壓壓力和積極的跡象拉應(yīng)力)。上部部分?jǐn)嗔衙媸且粋€(gè)緊張剪應(yīng)力區(qū)和逐步降低的價(jià)值從4.99至0.57MPa。3.4水平位移模型,橫向壓縮病安置低斷塊小,它的價(jià)值是0.3-5.6 mm.橫向壓縮病安置在斷層下帶是。最大值為四十二點(diǎn)六毫米,但逐漸下降至0.3毫米日益深入。在模式 ,緊張的橫向位移煤炭樓的上半部分的故障范圍從1.3mm到9.10mm.深橫向壓縮位移小,范圍從0.3毫米1.9 mm.橫向位移緊張帶故障是1.3和10.9毫米。3.5垂直位移正如在上述的描述,在采礦,垂直應(yīng)力裝載的巖石上改變.有時(shí),從煤壁前面到采空區(qū),推進(jìn)方向沿支撐的工作面壓力區(qū),降低工作壓力和垂直壓力恢復(fù)地區(qū)將上升.重訴這一發(fā)展,巖層的煤層底板可能成為壓區(qū),擴(kuò)大面積和重新壓縮面積位移巖石上的煤層底板降低日益深入。模型 ,壓縮位移在斷層下帶減少21.4毫米,在淺端8.2mm深底的擴(kuò)大面積減少上部從84毫米到4.9mm從淺到深部。在模式 ,壓縮位移在減少斷層下帶在從34.17mm淺端部3.88mm在底和深的擴(kuò)大面積的上半部分減少從14.28在淺層部分2.17mm的更深一部分。4結(jié)論鑒于我們的分析計(jì)算,可以得出以下推論:1)受采礦地面巖石,橫向應(yīng)力釋放領(lǐng)域和不斷上升的地區(qū)上半部分,并在帶故障發(fā)展。分布橫向應(yīng)力的影響的過失所顯示的壓力等值線是錯(cuò)開的故障面臨的應(yīng)力集中對巖層周圍的兩端故障。2)垂直分布也強(qiáng)調(diào)受故障,由于所表現(xiàn)出的壓力等值線,交錯(cuò)在故障面對的壓力是集中在巖層周圍的兩端故障。3)剪應(yīng)力分布的上限部分和下帶的故障也明顯不同,剪應(yīng)力集中在兩個(gè)兩端的故障。4)當(dāng)工作面處于帶的故障,有一個(gè)橫向拉應(yīng)力區(qū)上部斷裂;當(dāng)工作面于上半部分的故障,它有一個(gè)橫向壓縮應(yīng)力區(qū)在較低斷塊。5)當(dāng)工作面是低故障塊,最大垂直位移的5倍大于在上斷塊,這非常多增加了一個(gè)致命的突水從煤層底板。參考文獻(xiàn)1 Gao Y F,Shi L Q,Lou H J等.煤層底板突水突規(guī)律與防治.徐州 :中國礦業(yè)大學(xué)出版社, 1999 。 2錢鳴高,繆協(xié)興 ,巖層控制的關(guān)鍵層理論.徐州 :中國礦業(yè)大學(xué)出版社, 2000 。 3 Zhang J C,Zhang Y Z,Liu T Q.滲流在巖石和在煤礦底板突水.北京 :地質(zhì)出版, 1997年。 4王連國,宋揚(yáng),煤礦底板突水的非線性特性及預(yù)測.北京 :煤炭工業(yè)出版社, 2001年。 5 Gong S G,基本應(yīng)用與實(shí)例分析ANSYS.北京 :機(jī)械工業(yè)出版社, 2003 。 6 Li H Y,Zhou T P,Liu X X,ANSYS應(yīng)用工程輔導(dǎo).北京 :中國鐵道出版社, 2003 。 7王連國,宋元,礦井突水風(fēng)險(xiǎn)評估模型.工程地質(zhì)學(xué)報(bào), 2001,09 ( 02 ) :158-163 。8 繆協(xié)興,盧愛紅,茅獻(xiàn)彪,數(shù)值仿真膨脹巖巷道耦合作用下的水和地面壓力.中國礦業(yè)大學(xué)學(xué)報(bào), 2002,12( 2 ):121 - 125 。9王連國,畢善軍,宋揚(yáng),研究煤礦底板的變形與斷裂規(guī)律數(shù)值模擬.壓山壓力與頂板管理, 2004 ,( 4 ) :35 - 37 。 10王連國,宋揚(yáng),繆協(xié)興,基于尖點(diǎn)災(zāi)難性煤層底板突水模型研究.中國巖石力學(xué)與工程雜志, 2003,22 ( 4 ):573 - 577 。11 Jiang J Q,回采工作面圍巖運(yùn)動(dòng)和應(yīng)力.北京:煤炭工業(yè)出版社,1997年。
收藏