高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材 糾錯分析4 數(shù)列、不等式練習(xí) 理
《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材 糾錯分析4 數(shù)列、不等式練習(xí) 理》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材 糾錯分析4 數(shù)列、不等式練習(xí) 理(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
4.數(shù)列、不等式 1.等差數(shù)列及其性質(zhì) (1)等差數(shù)列的判定:an+1-an=d(d為常數(shù))或an+1-an=an-an-1 (n≥2). (2)等差數(shù)列的性質(zhì) ①當(dāng)公差d≠0時,等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d=dn+a1-d是關(guān)于n的一次函數(shù),且斜率為公差d;前n項(xiàng)和Sn=na1+d=n2+(a1-)n是關(guān)于n的二次函數(shù)且常數(shù)項(xiàng)為0. ②若公差d>0,則為遞增等差數(shù)列;若公差d<0,則為遞減等差數(shù)列;若公差d=0,則為常數(shù)列. ③當(dāng)m+n=p+q時,則有am+an=ap+aq,特別地,當(dāng)m+n=2p時,則有am+an=2ap. ④Sn,S2n-Sn,S3n-S2n成等差數(shù)列. [問題1] 已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=12,S20=17,則S30為( ) A.15 B.20 C.25 D.30 答案 A 2.等比數(shù)列及其性質(zhì) (1)等比數(shù)列的判定:=q(q為常數(shù),q≠0)或=(n≥2). (2)等比數(shù)列的性質(zhì) 當(dāng)m+n=p+q時,則有aman=apaq,特別地,當(dāng)m+n=2p時,則有aman=a. [問題2] (1)在等比數(shù)列{an}中,a3+a8=124,a4a7=-512,公比q是整數(shù),則a10=________. (2)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+…+log3a10=________. 答案 (1)512 (2)10 3.求數(shù)列通項(xiàng)的常見類型及方法 (1)已知數(shù)列的前幾項(xiàng),求數(shù)列的通項(xiàng)公式,可采用歸納、猜想法. (2)如果給出的遞推關(guān)系式符合等差或等比數(shù)列的定義,可直接利用等差或等比數(shù)列的公式寫出通項(xiàng)公式. (3)若已知數(shù)列的遞推公式為an+1=an+f(n),可采用累加法. (4)數(shù)列的遞推公式為an+1=anf(n),則采用累乘法. (5)已知Sn與an的關(guān)系,利用關(guān)系式an=求an. (6)構(gòu)造轉(zhuǎn)化法:轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式. [問題3] 已知f(x)是定義在R上不恒為零的函數(shù),對于任意的x,y∈R,都有f(xy)=xf(y)+yf(x)成立.?dāng)?shù)列{an}滿足an=f(2n)(n∈N*),且a1=2,則數(shù)列{an}的通項(xiàng)公式為an=________. 答案 n2n 解析 令x=2,y=2n-1,則f(xy)=f(2n)=2f(2n-1)+2n-1f(2),即an=2an-1+2n,=+1,所以數(shù)列{}是首項(xiàng)為1,公差為1的等差數(shù)列,由此可得=1+(n-1)1=n,即an=n2n. 4.?dāng)?shù)列求和的方法 (1)公式法:等差數(shù)列、等比數(shù)列求和公式; (2)分組求和法; (3)倒序相加法; (4)錯位相減法; (5)裂項(xiàng)法 如:=-;=. (6)并項(xiàng)法 數(shù)列求和時要明確:項(xiàng)數(shù)、通項(xiàng),并注意根據(jù)通項(xiàng)的特點(diǎn)選取合適的方法. [問題4] 數(shù)列{an}滿足an+an+1=(n∈N,n≥1),若a2=1,Sn是{an}的前n項(xiàng)和,則S21的值為________. 答案 5.如何解含參數(shù)的一元二次不等式 解含有參數(shù)的一元二次不等式一般要分類討論,往往從以下幾個方面來考慮:①二次項(xiàng)系數(shù),它決定二次函數(shù)的開口方向;②判別式Δ,它決定根的情形,一般分Δ>0、Δ=0、Δ<0三種情況;③在有根的條件下,要比較兩根的大小,也是分大于、等于、小于三種情況.在解一元二次不等式時,一定要畫出二次函數(shù)的圖象,注意數(shù)形結(jié)合. [問題5] 解關(guān)于x的不等式ax2-(a+1)x+1<0 (a>0). 解 原不等式化為(x-)(x-1)<0. ∴當(dāng)01時,不等式的解集為{x|- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材 糾錯分析4 數(shù)列、不等式練習(xí) 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 策略 第四 回歸 教材 糾錯 分析 數(shù)列 不等式 練習(xí)
鏈接地址:http://m.appdesigncorp.com/p-11988009.html