《高三理科數(shù)學(xué) 新課標二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題八 選修4系列 專題能力訓(xùn)練22 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué) 新課標二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題八 選修4系列 專題能力訓(xùn)練22 Word版含答案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
專題能力訓(xùn)練22 坐標系與參數(shù)方程(選修4—4)
能力突破訓(xùn)練
1.在平面直角坐標系xOy中,圓C的參數(shù)方程為(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為ρsin=m(m∈R).
(1)求圓C的普通方程及直線l的直角坐標方程;
(2)設(shè)圓心C到直線l的距離等于2,求m的值.
2.(20xx江蘇,21C)在平面直角坐標系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù)).設(shè)P為曲線C上的動點,求點P到直線l的距離的最小值.
2、
3.在直角坐標系xOy中,圓C的方程為(x+6)2+y2=25.
(1)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求C的極坐標方程;
(2)直線l的參數(shù)方程是(t為參數(shù)),l與C交于A,B兩點,|AB|=,求l的斜率.
4.已知曲線C:=1,直線l:(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
5.在極坐標系中,曲線C:ρ=2acos θ(a>0),l:ρcos,C
3、與l有且只有一個公共點.
(1)求a;
(2)O為極點,A,B為C上的兩點,且∠AOB=,求|OA|+|OB|的最大值.
6.在直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cos θ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(2)直線C3的極坐標方程為θ=α0,其中α0滿足tan α0=2,若曲線C1與C2的公共點都在C3上,求a.
7.在極坐標系中,曲線C的極坐標方程為ρsin2θ-cos θ=0,點
4、M.以極點O為原點,以極軸為x軸正半軸建立直角坐標系.斜率為-1的直線l過點M,且與曲線C交于A,B兩點.
(1)求出曲線C的直角坐標方程和直線l的參數(shù)方程;
(2)求點M到A,B兩點的距離之積.
思維提升訓(xùn)練
8.在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,☉C的極坐標方程為ρ=2sin θ.
(1)寫出☉C的直角坐標方程;
(2)P為直線l上一動點,當點P到圓心C的距離最小時,求P的直角坐標.
9.已知直線l的參數(shù)方
5、程為(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=.
(1)寫出直線l的極坐標方程與曲線C的直角坐標方程;
(2)若點P是曲線C上的動點,求點P到直線l的距離的最小值,并求出點P的坐標.
10.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρsin=4.
(1)求曲線C1的普通方程與曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P的坐標.
6、
參考答案
專題能力訓(xùn)練22 坐標系與參數(shù)方程(選修4—4)
能力突破訓(xùn)練
1.解(1)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)2=9.由sin=m,
得ρsinθ-ρcosθ-m=0.
所以直線l的直角坐標方程為x-y+m=0.
(2)依題意,圓心C到直線l的距離等于2,
即=2,解得m=-3±2
2.解直線l的普通方程為x-2y+8=0.
因為點P在曲線C上,設(shè)P(2s2,2s),
從而點P到直線l的距離d=
當s=時,dmin=
因此當點P的坐標為(4,4)時,曲線C上點P到直線l的距離取到最小值
3.解(1
7、)由x=ρcosθ,y=ρsinθ可得圓C的極坐標方程ρ2+12ρcosθ+11=0.
(2)在(1)中建立的極坐標系中,直線l的極坐標方程為θ=α(ρ∈R).
設(shè)A,B所對應(yīng)的極徑分別為ρ1,ρ2,將l的極坐標方程代入C的極坐標方程得ρ2+12ρcosα+11=0.
于是ρ1+ρ2=-12cosα,ρ1ρ2=11.
|AB|=|ρ1-ρ2|=
=
由|AB|=得cos2α=,tanα=±
所以l的斜率為或-
4.解(1)曲線C的參數(shù)方程為(θ為參數(shù)).
直線l的普通方程為2x+y-6=0.
(2)曲線C上任意一點P(2cosθ,3sinθ)到l的距離為d=|4cosθ+3
8、sinθ-6|,
則|PA|=|5sin(θ+α)-6|,其中α為銳角,且tanα=
當sin(θ+α)=-1時,|PA|取得最大值,最大值為
當sin(θ+α)=1時,|PA|取得最小值,最小值為
5.解(1)曲線C是以(a,0)為圓心,以a為半徑的圓,
l的直角坐標方程為x+y-3=0.
由直線l與圓C相切可得=a,解得a=1.
(2)不妨設(shè)A的極角為θ,B的極角為θ+,
則|OA|+|OB|=2cosθ+2cos
=3cosθ-sinθ=2cos,
當θ=-時,|OA|+|OB|取得最大值2
6.解(1)消去參數(shù)t得到C1的普通方程x2+(y-1)2=a2,C1是以
9、(0,1)為圓心,a為半徑的圓.
將x=ρcosθ,y=ρsinθ代入C1的普通方程中,得到C1的極坐標方程為ρ2-2ρsinθ+1-a2=0.
(2)曲線C1,C2的公共點的極坐標滿足方程組
若ρ≠0,由方程組得16cos2θ-8sinθcosθ+1-a2=0,
由已知tanθ=2,可得16cos2θ-8sinθcosθ=0,
從而1-a2=0,解得a=-1(舍去),a=1.
a=1時,極點也為C1,C2的公共點,在C3上,
所以a=1.
7.解(1)x=ρcosθ,y=ρsinθ,
由ρsin2θ-cosθ=0,得ρ2sin2θ=ρcosθ.
所以y2=x即為曲線C的直
10、角坐標方程.
點M的直角坐標為(0,1),
直線l的傾斜角為,故直線l的參數(shù)方程為
(t為參數(shù)),
即(t為參數(shù)).
(2)把直線l的參數(shù)方程(t為參數(shù))代入曲線C的方程得
=-t,即t2+3t+2=0,
Δ=(3)2-4×2=10>0.
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,
則
又直線l經(jīng)過點M,故由t的幾何意義得
點M到A,B兩點的距離之積
|MA|·|MB|=|t1||t2|=|t1·t2|=2.
思維提升訓(xùn)練
8.解(1)由ρ=2sinθ,得ρ2=2sinθ,
從而有x2+y2=2y,所以x2+(y-)2=3.
(2)設(shè)P,又C(0,),
則|PC|=
11、,
故當t=0時,|PC|取得最小值,
此時,點P的直角坐標為(3,0).
9.解(1)由得x-y=1,
故直線的極坐標方程為ρcosθ-ρsinθ=1,
即=1,
即cos=1.
∵ρ=,∴ρ=,
∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ,
即曲線C的直角坐標方程為y=x2.
(2)設(shè)P(x0,y0),y0=,則P到直線l的距離d=
∴當x0=時,dmin=,此時P
∴當點P的坐標為時,P到直線l的距離最小,最小值為
10.解(1)由曲線C1:(α為參數(shù)),得
(α為參數(shù)),
兩式兩邊平方相加,得+y2=1,
即曲線C1的普通方程為+y2=1.
由曲線C2:ρsin=4,得
(sinθ+cosθ)=4,
即ρsinθ+ρcosθ=8,所以x+y-8=0,
即曲線C2的直角坐標方程為x+y-8=0.
(2)由(1)知,橢圓C1與直線C2無公共點,橢圓上的點P(cosα,sinα)到直線x+y-8=0的距離d=,
所以當sin=1時,d的最小值為3,此時點P的坐標為