內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4

上傳人:痛*** 文檔編號(hào):68672826 上傳時(shí)間:2022-04-03 格式:PPT 頁(yè)數(shù):10 大?。?39.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4_第1頁(yè)
第1頁(yè) / 共10頁(yè)
內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4_第2頁(yè)
第2頁(yè) / 共10頁(yè)
內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《內(nèi)蒙古滿洲里市第七中學(xué)高中數(shù)學(xué) 第二章平面向量《平面幾何的向量方法》課件 新人教A版必修4(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2.5平面向量應(yīng)用舉例2.5.12.5.1平面幾何的向量方法平面幾何的向量方法平面幾何中的向量方法平面幾何中的向量方法 向量概念和運(yùn)算,都有明確的物理背景和幾何背景。向量概念和運(yùn)算,都有明確的物理背景和幾何背景。當(dāng)向量與平面坐標(biāo)系結(jié)合以后,向量的運(yùn)算就可以完全轉(zhuǎn)當(dāng)向量與平面坐標(biāo)系結(jié)合以后,向量的運(yùn)算就可以完全轉(zhuǎn)化為化為“代數(shù)代數(shù)”的計(jì)算,這就為我們解決物理問(wèn)題和幾何研的計(jì)算,這就為我們解決物理問(wèn)題和幾何研究帶來(lái)極大的方便。究帶來(lái)極大的方便。 由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、背景,平面幾何

2、的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。利用向量方法可以解決平面幾何中的一些問(wèn)題。問(wèn)題:?jiǎn)栴}:平行四邊形是表示向量加法與減法平行四邊形是表示向量加法與減法的幾何模型。如圖的幾何模型。如圖,你能發(fā)現(xiàn)平行四邊形你能發(fā)現(xiàn)平行四邊形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系嗎?嗎?,ACABAD ,DBABAD ABCD猜想:猜想:2.類比猜想,平行四邊形有相似關(guān)系嗎?類比猜想,平行四邊形有相似關(guān)系嗎?你能總結(jié)一下利用向量法解決平面幾

3、何問(wèn)題你能總結(jié)一下利用向量法解決平面幾何問(wèn)題的基本思路嗎?的基本思路嗎?用向量方法解決平面幾何問(wèn)題的用向量方法解決平面幾何問(wèn)題的“三步曲三步曲”: (1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題; (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;夾角等問(wèn)題; (3)把運(yùn)算結(jié)果)把運(yùn)算結(jié)果“翻譯翻譯”成幾何元素。成幾何元素。簡(jiǎn)述:形到向量簡(jiǎn)述:形到向量 向量的運(yùn)算向量的運(yùn)算 向量和數(shù)到形向量和數(shù)到形

4、例例2 如圖,如圖, ABCD中,點(diǎn)中,點(diǎn)E、F分別分別是是AD 、 DC邊的中點(diǎn),邊的中點(diǎn),BE 、 BF分別分別與與AC交于交于R 、 T兩點(diǎn),你能發(fā)現(xiàn)兩點(diǎn),你能發(fā)現(xiàn)AR 、 RT 、TC之間的關(guān)系嗎?之間的關(guān)系嗎?ABCDEFRT猜想:猜想:AR=RT=TC練習(xí)、證明直徑所對(duì)的圓周角練習(xí)、證明直徑所對(duì)的圓周角是直角是直角ABCO如圖所示,已知 O,AB為直徑,C為 O上任意一點(diǎn)。求證ACB=90分析分析:要證ACB=90,只須證向量 ,即 。CBAC 0CBAC解:解:設(shè) 則 ,由此可得:bOCaAO ,baCBbaAC,babaCBAC2222baba022rr即 ,ACB=900CBAC思考:能否用向量思考:能否用向量坐標(biāo)形式證明?坐標(biāo)形式證明?ab(1)建立平面幾何與向量的聯(lián)系,用向量表)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān))通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;系,如距離、夾角等問(wèn)題;(3)把運(yùn)算結(jié)果)把運(yùn)算結(jié)果“翻譯翻譯”成幾何元素。成幾何元素。小結(jié):小結(jié):用向量方法解決平面幾何問(wèn)題的用向量方法解決平面幾何問(wèn)題的“三步曲三步曲”:作業(yè):作業(yè):課本課本P125 1,2

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!