2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合

上傳人:努力****83 文檔編號:65065624 上傳時間:2022-03-22 格式:DOC 頁數(shù):7 大?。?48.50KB
收藏 版權(quán)申訴 舉報 下載
2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合_第1頁
第1頁 / 共7頁
2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合_第2頁
第2頁 / 共7頁
2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合》由會員分享,可在線閱讀,更多相關(guān)《2018屆高三數(shù)學(xué)一輪復(fù)習: 第10章 第2節(jié) 排列與組合(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第二節(jié) 排列與組合 [考綱傳真] 1.理解排列與組合的概念.2.理解排列數(shù)公式、組合數(shù)公式.3.能利用公式解決一些簡單的實際問題. 1.排列與組合的概念 名稱 定義 排列 從n個不同元素中取出m(m≤n)個元素 按照一定的順序排成一列 組合 合成一組 2.排列數(shù)與組合數(shù) (1)排列數(shù)的定義:從n個不同元素中取出m(m≤n)個元素的所有不同排列的個數(shù)叫做從n個不同元素中取出m個元素的排列數(shù),用A表示. (2)組合數(shù)的定義:從n個不同元素中取出m(m≤n)個元素的所有不同組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用C表示. 3.排列數(shù)、組合數(shù)的公

2、式及性質(zhì) 公式 (1)A=n(n-1)(n-2)…(n-m+1)= (2)C== = 性質(zhì) (1)0?。?;A=n! (2)C=C;C=C+C 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)所有元素完全相同的兩個排列為相同排列.(  ) (2)兩個組合相同的充要條件是其中的元素完全相同.(  ) (3)若組合式C=C,則x=m成立.(  ) (4)排列定義規(guī)定給出的n個元素各不相同,并且只研究被取出的元素也各不相同的情況.也就是說,如果某個元素已被取出,則這個元素就不再取了.(  ) [答案] (1)× (2)√ (3)× (4)√

3、 2.(教材改編)某高三畢業(yè)班有40人,同學(xué)之間兩兩彼此給對方僅寫一條畢業(yè)留言,那么全班共寫了畢業(yè)留言(  ) A.1 560條  B.780條 C.1 600條  D.800條 A [由題意,得畢業(yè)留言共A=1 560條.] 3.(2016·四川高考)用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為(  ) A.24 B.48 C.60 D.72 D [第一步,先排個位,有C種選擇; 第二步,排前4位,有A種選擇. 由分步乘法計數(shù)原理,知有C·A=72(個).] 4.(2017·唐山調(diào)研)某市委從組織機關(guān)10名科員中選3人擔任駐村第一書記,則甲、乙

4、至少有1人入選,而丙沒有入選的不同選法的種數(shù)為(  ) A.85 B.56 C.49 D.28 C [法一(直接法):甲、乙兩人均入選,有CC種方法, 甲、乙兩人只有1人入選,有CC種方法, 由分類加法計數(shù)原理,共有CC+CC=49種選法. 法二(間接法):從9人中選3人有C種方法, 其中甲、乙均不入選有C種方法, ∴滿足條件的選排方法有C-C=84-35=49種.] 5.A,B,C,D,E五人并排站成一排,如果B必須站在A的右邊(A,B可以不相鄰),那么不同的排法共有________種. 60 [5人的全排列,B站在A的右邊與A站在B的右邊各占一半, ∴滿足條件的不

5、同排法共A=60種.] 排列應(yīng)用題  (1)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有(  ) A.192種   B.216種  C.240種   D.288種 (2)(2017·北京西城區(qū)質(zhì)檢)把5件不同產(chǎn)品擺成一排,若產(chǎn)品A與產(chǎn)品B相鄰,且產(chǎn)品A與產(chǎn)品C不相鄰,則不同的擺法有________種. 【導(dǎo)學(xué)號:01772381】 (1)B (2)36 [(1)第一類:甲在左端, 有A=5×4×3×2×1=120種方法; 第二類:乙在最左端, 有4A=4×4×3×2×1=96種方法, 所以共有120+96=216種方法. (2)

6、記其余兩種產(chǎn)品為D,E,A,B相鄰視為一個元素,先與D,E排列,有AA種方法.再將C插入,僅有3個空位可選,共有AAC=2×6×3=36種不同的擺法.] [規(guī)律方法] 1.第(1)題求解的關(guān)鍵是按特殊元素甲、乙的位置進行分類.注意特殊元素(位置)優(yōu)先原則,即先排有限制條件的元素或有限制條件的位置.對于分類過多的問題,可利用間接法. 2.對相鄰問題采用捆綁法、不相鄰問題采用插空法、定序問題采用倍縮法等常用的解題方法. [變式訓(xùn)練1] 在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一或最后一步,程序B和C在實施時必須相鄰,問實驗順序的編排方法共有(  ) A.34

7、種 B.48種 C.96種 D.144種 C [程序A的順序有A=2種結(jié)果,將程序B和C看作一個元素與除A外的元素排列有AA=48種結(jié)果, 由分步乘法計數(shù)原理,實驗編排共有2×48=96種方法.] 組合應(yīng)用題  (1)若從1,2,3,…,9這9個整數(shù)中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法共有(  ) A.60種 B.63種 C.65種 D.66種 (2)(2016·全國卷Ⅲ)定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項,其中m項為0,m項為1,且對任意k≤2m,a1,a2,…,ak中0的個數(shù)不少于1的個數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有(  

8、) A.18個 B.16個 C.14個 D.12個 (1)D (2)C [(1)共有4個不同的偶數(shù)和5個不同的奇數(shù),要使和為偶數(shù),則4個數(shù)全為奇數(shù),或全為偶數(shù),或2個奇數(shù)和2個偶數(shù), ∴不同的取法共有C+C+CC=66種. (2)由題意知:當m=4時,“規(guī)范01數(shù)列”共含有8項,其中4項為0,4項為1,且必有a1=0,a8=1.不考慮限制條件“對任意k≤2m,a1,a2,…,ak中0的個數(shù)不少于1的個數(shù)”,則中間6個數(shù)的情況共有C=20(種),其中存在k≤2m,a1,a2,…,ak中0的個數(shù)少于1的個數(shù)的情況有:①若a2=a3=1,則有C=4(種);②若a2=1,a3=0,則a4

9、=1,a5=1,只有1種;③若a2=0,則a3=a4=a5=1,只有1種.綜上,不同的“規(guī)范01數(shù)列”共有20-6=14(種). 故共有14個.故選C.] [規(guī)律方法] 1.(1)“含有”或“不含有”某些元素的組合題型:“含”,則先將這些元素取出,再由另外元素補足;“不含”,則先將這些元素剔除,再從剩下的元素中選?。? (2)“至少”或“至多”含有幾個元素的題型:若直接法分類復(fù)雜時,逆向思維,間接求解. 2.第(2)題是“新定義”問題,首先理解“規(guī)范01數(shù)列”的定義是解題的關(guān)鍵,注意分類討論時要不重不漏,并重視間接法的應(yīng)用. [變式訓(xùn)練2] 現(xiàn)有16張不同的卡片,其中紅色、黃色、藍色、

10、綠色卡片各4張.從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,不同取法的種數(shù)為________. 472 [第一類,含有1張紅色卡片,不同的取法CC=264種.第二類,不含有紅色卡片,不同的取法C-3C=220-12=208種. 由分類加法計數(shù)原理,不同的取法共264+208=472種.] 排列與組合的綜合應(yīng)用 ?角度1 簡單的排列與組合的綜合問題  (2017·成都質(zhì)檢)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中比40 000大的偶數(shù)共有(  ) A.144個 B.120個 C.96個 D.72個 B [當五位數(shù)的萬位為4時,個

11、位可以是0,2,此時滿足條件的偶數(shù)共有CA=48個;當五位數(shù)的萬位為5時,個位可以是0,2,4,此時滿足條件的偶數(shù)共有CA=72個, 所以比40 000大的偶數(shù)共有48+72=120個.] ?角度2 分組分配問題  (2017·江南名校聯(lián)考)將甲、乙等5位同學(xué)分別保送到北京大學(xué),上海交通大學(xué),浙江大學(xué)三所大學(xué)就讀,則每所大學(xué)至少保送一人的不同保送的方法有(  ) 【導(dǎo)學(xué)號:01772382】 A.240種 B.180種 C.150種 D.540種 C [5名學(xué)生可分為2,2,1和3,1,1兩組方式. 當5名學(xué)生分成2,2,1時,共有CCA=90種方法;當5名學(xué)生分成3,1

12、,1時,共有CA=60種方法. 由分類加法計數(shù)原理知共有90+60=150種保送方法.] [規(guī)律方法] 1.解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).對于排列組合的綜合題目,一般是先取出符合要求的元素,再對取出的元素排列. 2.(1)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組,注意各種分組類型中,不同分組方法的求法. (2)對于相同元素的“分配”問題,常用的方法是采用“隔板法”. [思想與方法] 1.解有附加條件的排列、組合應(yīng)用題的三種思路: (1)特殊元素、特

13、殊位置優(yōu)先原則. (2)解受條件限制的組合題,通常用直接法(合理分類)和間接法(排除法)來解決,分類標準應(yīng)統(tǒng)一. (3)解排列、組合的綜合題一般是先選再排,先分組再分配. 2.求解排列組合問題的思路:“排組分清,加乘明確;有序排列,無序組合;分類相加,分步相乘.” [易錯與防范] 1.易混淆排列與組合問題,區(qū)分的關(guān)鍵是看選出的元素是否與順序有關(guān),排列問題與順序有關(guān),組合問題與順序無關(guān). 2.計算A時易錯算為n(n-1)(n-2)…(n-m). 3.易混淆排列與排列數(shù),排列是一個具體的排法,不是數(shù),是一件事,而排列數(shù)是所有排列的個數(shù),是一個正整數(shù). 4.解組合應(yīng)用題時,應(yīng)注意“至少”“至多”“恰好”等詞的含義. 5.對于分配問題,一般是堅持先分組,再分配的原則,注意平均分組與不平均分組的區(qū)別,避免重復(fù)或遺漏.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!