線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文

上傳人:1666****666 文檔編號(hào):36827888 上傳時(shí)間:2021-11-01 格式:DOC 頁(yè)數(shù):16 大小:445.53KB
收藏 版權(quán)申訴 舉報(bào) 下載
線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文_第1頁(yè)
第1頁(yè) / 共16頁(yè)
線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文_第2頁(yè)
第2頁(yè) / 共16頁(yè)
線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文_第3頁(yè)
第3頁(yè) / 共16頁(yè)

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文》由會(huì)員分享,可在線閱讀,更多相關(guān)《線性方程的邊界齊次化數(shù)學(xué)畢業(yè)論文(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、目 錄 線性方程的邊界齊次化 1 摘 要 1 Abstract 1 第一章 引 言 2 第二章 波動(dòng)方程和熱傳導(dǎo)方程的邊界齊次化 2 2.1 第一類非齊次邊界條件的齊次化 2 2.1.1 考察波動(dòng)方程 2 2.1.2 考察熱傳導(dǎo)問(wèn)題 6 2.2 第二類非齊次邊界條件 8 2.3 第三類非齊次邊界條件的齊次化 10 第三章 總結(jié) 13 參考文獻(xiàn) 14 致謝 15 線性方程的邊界齊次化 摘 要:分離變量法是線性偏微分方程求解中的一種普遍而重要的方法,而用分離變量法解方程時(shí),我們需要將非齊次邊界條件齊次化。本文將以波動(dòng)方程和拋物方程為例,分別在第一

2、邊界條件、第二邊界條件、第三邊界條件下,討論這些非齊次邊界條件的齊次化過(guò)程。 關(guān)鍵詞:分離變量法;非齊次邊界條件;齊次化 On the homogeneity of boundary conditions for linear partial differential equations School of Mathematics and Computer Science Abstract: The method of variables separation is one of very efficient methods to solve linear partia

3、l differential equations. When we adopt this method, we have to make the boundary conditions homogeneous. This paper will focus on the hyperbolic equations and parabolic equations and discuss how to make the corresponding boundary conditions homogeneous. In particular, the boundary conditions consid

4、ered in the present paper include the first and second boundary conditions, the third boundary condition. Keywords: variables separation method; inhomogeneous boundary conditions; homogeneity of boundary conditions. 第一章 引 言 微積分產(chǎn)生以后,人們就開(kāi)始把力學(xué)的一些問(wèn)題,歸結(jié)為偏微分方程進(jìn)行研究。對(duì)它們進(jìn)行了定量的分析,而變量分離法是對(duì)其進(jìn)行

5、定量分析的一種重要工具。應(yīng)用分離變量法解定解問(wèn)題, 其核心是由泛定方程和定解條件通過(guò)變量分離能提出固有值問(wèn)題。這就要求泛定方程和邊界條件是齊次的,因此將非齊次邊界條件齊次化就成為需要解決的重要問(wèn)題。 第二章 波動(dòng)方程和熱傳導(dǎo)方程的邊界齊次化 2.1 第一類非齊次邊界條件的齊次化 2.1.1 考察波動(dòng)方程 泛定方程 邊界條件 初始條件 先找一個(gè)任意函數(shù),滿足非齊次邊界條件,即 , 找函數(shù)最簡(jiǎn)單的選取方法是寫(xiě)成X的線性函數(shù),可以解得, 所以 設(shè) , 代入定解問(wèn)題轉(zhuǎn)為求解的如下定解問(wèn)題: 于是關(guān)于的定解問(wèn)題是齊次邊界條件的定解

6、問(wèn)題。 對(duì)于熱傳導(dǎo)方程的定解問(wèn)題 可以令 選取使 即 易見(jiàn),可造 由 知 與無(wú)關(guān),故 例1、設(shè)彈簧一端固定,一端在外力作用下作周期振動(dòng),此時(shí)定解問(wèn)題歸結(jié)為 求解此問(wèn)題。 解:邊值條件是非齊次的,首先將邊值條件齊次化, 取 , 則滿足 , 令 代入原定解問(wèn)題,則滿足 滿足第一類齊次邊界條件,其相應(yīng)固有函數(shù)為 , 故設(shè) 將方程中非齊次項(xiàng)及初始條件中按展成級(jí)數(shù), 得 其中 其中 將(2)代入問(wèn)題(1),得 解方程,得

7、通解 由初始值,得 所以 因此所求解為 2.1.2 考察熱傳導(dǎo)問(wèn)題 在研究熱傳導(dǎo)、擴(kuò)散等現(xiàn)象,都會(huì)遇到拋物型方程,即熱傳導(dǎo)方程。 這里邊值函數(shù)函數(shù)為,可采用下述方法將它延拓到區(qū)間中去。 對(duì)任意固定的,將視為平面上的兩個(gè)點(diǎn),只要用光滑曲線將這兩個(gè)點(diǎn)連接起來(lái),就實(shí)現(xiàn)了的邊界值的延拓,而連接兩點(diǎn)的光滑曲線就是所求的函數(shù),顯然,取為直線最簡(jiǎn)單。由直線的兩點(diǎn)式方程得到 , 特別地,若 , 則的物理意義就是穩(wěn)定溫度分布。 例2、將如下定解問(wèn)題化為邊界條件為齊次的定界問(wèn)題

8、 解:邊界條件為非齊次的邊界條件,由于是線性的,故可利用疊加原理,通過(guò)選取輔助函數(shù)。設(shè) 要使 只要 解得: 故 , 再作未知函數(shù)的變換 , 則問(wèn)題轉(zhuǎn)化為其次邊界條件的初邊值問(wèn)題。 2.2 第二類非齊次邊界條件 考察定解問(wèn)題中邊界條件均為第二類非齊次邊界條件的情形, 即 同樣找一個(gè)任意函數(shù)使它滿足 , 說(shuō)明在任意時(shí)刻,在邊界和處的斜率不相同。因此就不是簡(jiǎn)單的線性函數(shù),此時(shí)最簡(jiǎn)單的應(yīng)為關(guān)于的二次函數(shù)著手,設(shè) 其中 所以 , 于是 。 對(duì)于方程 令 選取,使 即 可令 代入上式得 例3、一均

9、勻桿長(zhǎng)為,一端受縱向壓力,另一端受縱向力作用,求解桿的穩(wěn)恒縱振動(dòng)。 解:設(shè)為縱振動(dòng)位移,則定解問(wèn)題為 其中為桿的橫截面積,均為常數(shù), 本問(wèn)題中, , 于是 設(shè) , 代入定解問(wèn)題中得 至此已使邊界條件齊次化。 2.3 第三類非齊次邊界條件的齊次化 考察定解問(wèn)題 令 則由(4)、(5)兩式可得 將和延拓到區(qū)間0

10、 要解(7)式,必須利用線性問(wèn)題疊加原理,引入輔助函數(shù)將問(wèn)題化為關(guān)于的非齊次邊界條件定解問(wèn)題。為此設(shè) (8) 將(8)式代入(7),要求滿足其次邊界條件,得到 (9) 結(jié)合(8)、(9)式,可得輔助函數(shù)滿足的方程為 (10) 則可以是關(guān)于x的一次多項(xiàng)式,即 (11) 代入(10)得 解得為 (12)

11、 代入(11)式可確定輔助函數(shù)V(x,t),結(jié)合(7)、(8)式,的定解問(wèn)題為 即完成了邊界條件齊次化。 15 15 第三章 總結(jié) 以上便是對(duì)非齊次邊界條件的邊界齊次化的討論,分別給出了第一非齊次邊界條件、第二非齊次邊界條件、第三非齊次邊界條件的邊界其次化過(guò)程,其中是以波動(dòng)方程以及熱傳導(dǎo)方程為例的。而三種非齊次邊界條件的邊界齊次化過(guò)程的核心,都是要找到一個(gè)輔助函數(shù)滿足其對(duì)應(yīng)的非齊次邊界條件,找到了這個(gè)函數(shù),三種非齊次邊界條件的邊界齊次化過(guò)程就迎刃而解了。 參考文獻(xiàn): [1]數(shù)學(xué)物理方程(第二版).谷超豪等著. 高等教育出版社出版 [2]數(shù)學(xué)物理方法. 吳崇試著.

12、 北京大學(xué)出版社 [3]天津科技大學(xué)學(xué)報(bào).丁玉梅著.1672-6510{2006}01-0084-02. [4]平頂山學(xué)院學(xué)報(bào).車(chē)行,龍姝明著.1673-1670{2011}02-0006-04. [5]非齊次邊界條件.王芝威著. 致謝 首先感謝的是我的論文導(dǎo)師老師,在黃老師耐心和細(xì)心的指導(dǎo)下,我順利的完成了大學(xué)本科畢業(yè)論文,黃老師每次認(rèn)真的給我寶貴的建議,這讓我很感動(dòng),因?yàn)闀r(shí)間原因,論文有點(diǎn)粗糙,但是黃老師和藹可親的指導(dǎo)我的論文,黃老師嚴(yán)謹(jǐn)?shù)慕虒W(xué)態(tài)度,高尚的工作作風(fēng),深深地感染了我,是我學(xué)習(xí)的榜樣,是我將來(lái)當(dāng)一名人民教師的理想目標(biāo). 我還要感謝的是安徽師范大學(xué)的全體老師,是你們的成就創(chuàng)造了我大學(xué)四年美好的校園生活,在你們的諄諄教誨下,我現(xiàn)在已經(jīng)走在人民教師的崗位上,我正在努力的成為一名優(yōu)秀的人民教師,我會(huì)向著老師們的準(zhǔn)則邁進(jìn),安徽師范大學(xué)的全體老師們,尤其是數(shù)計(jì)學(xué)院的老師們,謝謝您們,您們辛苦了!

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!