《純電動客車底架優(yōu)化設(shè)計(jì)》由會員分享,可在線閱讀,更多相關(guān)《純電動客車底架優(yōu)化設(shè)計(jì)(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、純電動客車底架優(yōu)化設(shè)計(jì)
汽車工業(yè)領(lǐng)域結(jié)構(gòu)優(yōu)化設(shè)計(jì)方法主要有:拓?fù)浣Y(jié)構(gòu)優(yōu)化、尺寸結(jié)構(gòu)優(yōu)化以及形狀結(jié)構(gòu)優(yōu)化等[1]。拓?fù)鋬?yōu)化可以在設(shè)計(jì)階段初期按照性能需求進(jìn)行性能優(yōu)化設(shè)計(jì)[2-4],從而保證后續(xù)的尺寸優(yōu)化和形狀優(yōu)化都是在材料最優(yōu)分布的前提下進(jìn)行的優(yōu)化設(shè)計(jì)[5-7]。對于客車整車骨架而言,由于車身骨架結(jié)構(gòu)簡單,拓?fù)淇臻g較小且方鋼搭建較為成熟,本文將主要考慮底架的拓?fù)?。為了使拓?fù)鋬?yōu)化設(shè)計(jì)達(dá)到最大化,本文將不再以底架局部空間為拓?fù)鋬?yōu)化對象。因此對某款純電動客車整個底架進(jìn)行拓?fù)鋬?yōu)化設(shè)計(jì),最大程度提高原有車身骨架的整體力學(xué)性能。
1底架的第一輪拓?fù)鋬?yōu)化設(shè)計(jì)
1.1底架
2、拓?fù)鋬?yōu)化空間的建立。本文分析的純電動客車整車骨架采用HyperMesh軟件進(jìn)行有限元建模。其中有限元單元總數(shù)為1290403個,節(jié)點(diǎn)數(shù)1260881個,三角形單元有7694個,占總數(shù)比為0.6%<5%。故有限元模型合格。其整車車身骨架有限元模型如圖1所示。拓?fù)鋬?yōu)化是在給定的設(shè)計(jì)空間區(qū)域內(nèi)找到其最優(yōu)的材料分布,以達(dá)到最優(yōu)力學(xué)性能和最省材料分布的結(jié)構(gòu)優(yōu)化設(shè)計(jì)[8]。所以拓?fù)鋬?yōu)化被廣泛用于汽車的正向設(shè)計(jì)以及輕量化設(shè)計(jì)[9-11]。本文基于SIMP材料差值的變密度法,以拓?fù)淇臻g的單元密度為設(shè)計(jì)變量;以優(yōu)化后與優(yōu)化前的總體積比值不大于0.1為約束條件;以柔度最小化(即剛度值最大)為目標(biāo)函數(shù)進(jìn)行拓?fù)鋬?yōu)化。
3、本文所研究車型為底置電池的純電動客車骨架,與傳統(tǒng)燃油機(jī)客車骨架相比,純電動客車車身結(jié)構(gòu)與承受載荷基本保持不變,由于底架上的發(fā)動機(jī)換成了電池,并且電池體積分布較大,質(zhì)量較重,因此底架的結(jié)構(gòu)改動較大。所以本文只將底架作為拓?fù)鋬?yōu)化設(shè)計(jì)空間,車身骨架仍采用較為成熟的基礎(chǔ)車型客車骨架作為非拓?fù)湓O(shè)計(jì)空間,并將該底架作為拓?fù)湓O(shè)計(jì)空間,車身骨架作為非拓?fù)湓O(shè)計(jì)空間的整車骨架有限元模型在Optistruct軟件中進(jìn)行迭代計(jì)算。原底架如圖2所示。為使拓?fù)淇臻g達(dá)到最大化,除保留底架主要橫縱梁以及一些功能性方鋼以外,其余斜撐等方鋼全部刪除。由于前中門踏板作為單獨(dú)總成進(jìn)行整車組裝,且考慮需站立乘客等情況應(yīng)過盈設(shè)計(jì),所以將
4、其作為非拓?fù)淇臻g。在拓?fù)淇臻g區(qū)域鋪設(shè)20mm厚的鋼板。關(guān)于下文所用到的方向,其設(shè)置標(biāo)準(zhǔn)為:X軸為縱向,客車后側(cè)方向?yàn)檎?Y軸為橫向,客車右側(cè)方向?yàn)檎?Z軸為豎直方向,向上方向?yàn)檎?。底架鋪設(shè)鋼板示意圖如圖3所示。整個底架一共鋪設(shè)73組鋼板,其中XOY面鋪設(shè)40組,XOZ面鋪設(shè)10組,YOZ面鋪設(shè)23組。為了使拓?fù)鋬?yōu)化結(jié)果便于工程制造和工藝性,軟件中設(shè)置了模式組約束進(jìn)行對稱設(shè)計(jì)。同時設(shè)置最小成員尺寸為75mm,最大成員尺寸為150mm。1.2工況設(shè)置和權(quán)重系數(shù)的確定。1.2.1拓?fù)鋬?yōu)化的工況設(shè)置??蛙囋谛旭傔^程中最常見的兩種工況為彎曲工況和扭轉(zhuǎn)工況,因此本次拓?fù)鋬?yōu)化采取彎曲工況和扭轉(zhuǎn)工況進(jìn)行
5、工況設(shè)置。對于彎曲工況:約束左前輪DOF23、右前輪DOF3、左后輪DOF123、右后輪DOF3。在底架中段左右縱梁上方施加均布載荷,均布載荷單側(cè)合力大小為1000N。對于扭轉(zhuǎn)工況:約束左后輪DOF123,右后輪DOF13,左前氣囊和右前氣囊之間建立MPC約束,MPC約束上施加力矩為2000Nm[12]。1.2.2多工況權(quán)重系數(shù)的確定。對于彎曲工況和扭轉(zhuǎn)工況權(quán)重系數(shù)的確定,先給定彎曲和扭轉(zhuǎn)兩工況權(quán)重系數(shù)均為1,然后在Optist-ruct軟件中進(jìn)行一個迭代步的運(yùn)算后輸出OUT文件,查看OUT文件中兩工況compliance值分別為2.988393E+02和1.150530E+03。由于兩工況c
6、om-pliance值相差約4倍,因此重新給定彎曲和扭轉(zhuǎn)兩工況權(quán)重系數(shù)分別為4和1,重復(fù)上述步驟,得到兩工況compliance值相近,分別為1.195357E+03和1.150529E+03。此時給定的權(quán)重系數(shù)即為合理的權(quán)重系數(shù)值。1.3拓?fù)鋬?yōu)化結(jié)果與傳力路徑分析。通過Optistruct軟件計(jì)算,經(jīng)過73步迭代運(yùn)算,得到拓?fù)鋬?yōu)化計(jì)算結(jié)果。本次拓?fù)渲饕獎h除斜撐而保留橫縱梁。通過局部放大車架的拓?fù)浣Y(jié)果圖,XOY面后橋左右上方拓?fù)鋬?yōu)化結(jié)果與YOZ面與中部地板相連的后橋左右處拓?fù)鋬?yōu)化結(jié)果如圖4所示。由于后橋左右上方中間2根橫梁處存在座椅安裝點(diǎn),故在底架的第一輪拓?fù)鋬?yōu)化中只刪除了附近的斜撐,保留了橫
7、梁。而從圖4(a)可知,后橋左右上方中間2根橫梁的存在明顯打斷了拓?fù)涞膫髁β窂?。由圖4(b)可知中間2根橫梁雖有一定的加強(qiáng)作用,但是其傳力路徑結(jié)構(gòu)復(fù)雜且衍生出很多細(xì)小路徑,不利于工藝制造。故需要對這些橫縱梁方鋼進(jìn)一步刪除,擴(kuò)大拓?fù)鋬?yōu)化空間進(jìn)行第二輪拓?fù)鋬?yōu)化。使得傳力路徑更加清晰合理。即通過第一輪拓?fù)鋬?yōu)化結(jié)果分析找出由于橫縱梁的存在而導(dǎo)致的傳力路徑不合理的局部空間,對其拓?fù)淇臻g進(jìn)一步釋放后展開第二輪拓?fù)鋬?yōu)化。
2底架的第二輪拓?fù)鋬?yōu)化設(shè)計(jì)
2.1底架局部改進(jìn)后的拓?fù)鋬?yōu)化空間。通過對第一輪拓?fù)鋬?yōu)化結(jié)果與傳力路徑的分析可知,由于過多保留橫縱梁方鋼導(dǎo)致底架多處部位出現(xiàn)傳力
8、路徑被打斷以及衍生出過多細(xì)小路徑等現(xiàn)象。故在不改變約束條件和目標(biāo)函數(shù)的前提下,通過擴(kuò)大第一輪底架拓?fù)鋬?yōu)化空間,而車身骨架仍采用基礎(chǔ)車型骨架作為非拓?fù)鋬?yōu)化空間,最終將底架拓?fù)湓O(shè)計(jì)空間改動后的整車骨架有限元模型在Optistruct軟件中進(jìn)行迭代運(yùn)算。第二輪拓?fù)鋁OY面后橋左右上方鋪設(shè)鋼板與YOZ面與中部地板相連的后橋左右鋪設(shè)鋼板如圖5所示。即刪除中間橫梁,使得拓?fù)淇臻g進(jìn)一步釋放。整個底架一共鋪設(shè)69組鋼板,其中XOY面鋪設(shè)38組,XOZ面鋪設(shè)10組,YOZ面鋪設(shè)21組。第二輪拓?fù)涞准茕佋O(shè)鋼板示意圖如圖6所示。(a)XOY面后橋左右上方(b)XOZ面與中部地板相連的后橋左右處圖5第二輪拓?fù)滗佋O(shè)鋼板
9、示意圖圖6第二輪拓?fù)涞准茕佋O(shè)鋼板示意圖2.2拓?fù)鋬?yōu)化結(jié)果與方鋼搭建。2.2.1局部改進(jìn)處的拓?fù)鋫髁β窂椒治?。通過Optistruct軟件計(jì)算,經(jīng)過72步迭代運(yùn)算,得到拓?fù)鋬?yōu)化計(jì)算結(jié)果。XOY面后橋左右上方第二輪拓?fù)鋬?yōu)化結(jié)果與YOZ面與中部地板相連的后橋左右處第二輪拓?fù)浣Y(jié)果如圖7所示。(a)XOY面后橋左右上方(b)YOZ面與中部地板相連的后橋左右處圖7第二輪拓?fù)鋬?yōu)化結(jié)果示意圖對比圖4(a)和圖7(a)可知第二輪拓?fù)鋬?yōu)化傳力路徑無被打斷現(xiàn)象;對比圖4(b)和圖7(b)可知第二輪拓?fù)鋬?yōu)化傳力路徑更加清晰連貫且未出現(xiàn)細(xì)小路徑。可進(jìn)行下一步的方鋼搭建。2.2.2底架第二輪拓?fù)鋬?yōu)化結(jié)果與方鋼搭建。通過H
10、yperMesh軟件Post界面中OSSmoth處理以及可制造化處理原則進(jìn)行方鋼搭建。XOY面拓?fù)鋬?yōu)化結(jié)果如圖8所示,XOY面方鋼搭建如圖9所示。圖8XOY面拓?fù)鋬?yōu)化結(jié)果圖9XOY面方鋼搭建從拓?fù)鋬?yōu)化結(jié)果示意圖可以看出,整體拓?fù)鋫髁β窂奖容^清晰且較為合理。故本次拓?fù)浜蟮姆戒摯罱▏?yán)格按照拓?fù)鋬?yōu)化結(jié)果進(jìn)行??紤]到生產(chǎn)工藝技術(shù)等工程實(shí)際情況,只對局部傳力路徑不明顯處進(jìn)行略微刪減和改進(jìn)。2.3拓?fù)鋬?yōu)化前后的性能對比。客車的剛度主要包括彎曲剛度和扭轉(zhuǎn)剛度。剛度工況的設(shè)置與拓?fù)鋬?yōu)化的靜力學(xué)分析設(shè)置相同。拓?fù)鋬?yōu)化前后相關(guān)值對比見表1。由表1可知,經(jīng)過兩輪拓?fù)鋬?yōu)化后與原車型相比,底架質(zhì)量減輕了0.048t,彎曲剛度增加了4492.2N/mm,增幅達(dá)到了50.1%,扭轉(zhuǎn)剛度增加了548.3kNm/rad,增幅達(dá)到了35.1%。
3結(jié)束語
本文采用SIMP差值的變密度法,以體積分?jǐn)?shù)為約束條件,以最小柔度為目標(biāo)函數(shù),對某款純電動客車底架進(jìn)行了線性加權(quán)的多工況兩輪拓?fù)鋬?yōu)化,結(jié)果表明:在質(zhì)量減輕了0.048t的同時,彎曲剛度和扭轉(zhuǎn)剛度增幅分別達(dá)到了50.1%和35.1%。