2019-2020年高中數(shù)學(xué) 函數(shù)與方程教案 蘇教版必修1.doc
《2019-2020年高中數(shù)學(xué) 函數(shù)與方程教案 蘇教版必修1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 函數(shù)與方程教案 蘇教版必修1.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 函數(shù)與方程教案 蘇教版必修1 教學(xué)目標(biāo): 使學(xué)生掌握二次函數(shù)與二次方程這二者之間的相互聯(lián)系,能運(yùn)用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想. 教學(xué)重點(diǎn): 利用函數(shù)的圖象研究二次方程的根的分布問(wèn)題. 教學(xué)難點(diǎn): 利用函數(shù)的圖象研究二次方程的根的分布問(wèn)題. 教學(xué)過(guò)程: Ⅰ.復(fù)習(xí)引入 初中二次函數(shù)的圖象及有關(guān)的問(wèn)題 Ⅱ.講授新課 問(wèn)題:二次函數(shù)y=ax2+bx+c(a>0)與一元二次方程ax2+bx+c=0(a>0)之間有怎樣的關(guān)系? 我的思路:(1)當(dāng)△=b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c(a>0)與x軸有兩個(gè)交點(diǎn)(x1,0)、(x2,0),(不妨設(shè)x1<x2)對(duì)應(yīng)的一元二次方程ax2+bx+c=0(a>0)有兩個(gè)不等實(shí)根x1、x2; (2)當(dāng)△=b2-4ac=0時(shí),二次函數(shù)y=ax2+bx+c(a>0)與x軸有且只有一個(gè)交點(diǎn)(x0,0),對(duì)應(yīng)的一元二次方程ax2+bx+c=0(a>0)有兩個(gè)相等實(shí)根x0; ?。?)當(dāng)△=b2-4ac<0時(shí),二次函數(shù)y=ax2+bx+c(a>0)與x軸沒(méi)有公共點(diǎn),對(duì)應(yīng)的一元二次方程ax2+bx+c=0(a>0)沒(méi)有實(shí)根. [例1]已知集合A={x|x2-5x+4≤0}與B={x|x2-2ax+a+2≤0,aR},若A∪B=A,求a的取值范圍. 解析:本例主要考查學(xué)生對(duì)于二次方程的根的分布解決能力和靈活轉(zhuǎn)化意識(shí). ∵A=[1,4],A∪B=A,∴BA. 若B=,即x2-2ax+a+2>0恒成立,則△=4a2-4(a+2)<0, ∴-1<a<2; 若B≠,解法一:△=4a2-4(a+2)≥0, ∴a≥2或a≤-1. ∵方程x2-2ax+a+2=0的兩根為x1,2=a. 則B={x|a-≤x≤a+},由題意知 解之得2≤a≤,綜合可知a(-1,]. 解法二:f(x)=x2-2ax+a+2, 如圖知 解之得2≤a≤,綜上可知a(-1,]. ?。劾?]已知x的不等式>ax的解區(qū)間是(0,2),求a的值. 解析:本題主要考查含參數(shù)無(wú)理不等式的解法,運(yùn)用逆向思維解決問(wèn)題. 解法一:在同一坐標(biāo)系中,分別畫(huà)出兩個(gè)函數(shù)y1=和y2=ax的圖象. 如下圖所示,欲使解區(qū)間恰為(0,2),則直線y=ax必過(guò)點(diǎn)(2,2),則a=1. 解法二:∵0<x<2,當(dāng)a≥0時(shí),則4x-x2>a2x2. ∴0<x<,則=2,∴a=1. 當(dāng)a<0時(shí),原不等式的解為(0,4),與題意不符, ∴a<0舍去. 綜上知a=1. [例3]已知函數(shù)f(x)=x2+2bx十c(c<b<1),f(1)=0,且方程f(x)+1=0有實(shí)根, ?。?)證明:-3<c≤-1且b≥0; (2)若m是方程f(x)+1=0的一個(gè)實(shí)根,判斷f(m-4)的正負(fù),并說(shuō)明理由. 解析:(1)由f(1)=0,則有b=-, 又因?yàn)閏<b<1,消去b解之得-3<c<-; ① 又方程f(x)+1=0有實(shí)根,即x2+2bx+c+1=0有實(shí)根, 故△=4b2-4(c+1)≥0,消去b解之得c≥3或c≤-1; ?、? 由①②可知,-3<c≤-1且b≥0. ?。?)f(x)=x2+2bx+c=(x-c)(x-1),f(m)=-1<0,∴c<m<1, 從而c-4<m-4<-3<c, ∴f(m-4)=(m-4-c)(m-4-1)>0,即f(m-4)的符號(hào)為正. Ⅲ.課后作業(yè) 1.關(guān)于x的不等式ax2+bx+2>0的解集是(-∞,-)∪(,+∞),求ab的值 解析:方程ax2+bx+2=0的兩根為-、, 則 ∴ ∴ab=24. 2.方程x2-2ax+4=0的兩根均大于1,求實(shí)數(shù)a的取值范圍. 解析:方法一:利用韋達(dá)定理,設(shè)方程x2-2ax+4=0的兩根為x1、x2, 則解之得2≤a<. 方法二:利用二次函數(shù)圖象的特征,設(shè)f(x)=x2-2ax+4, 則解之得2≤a<. 3.已知不等式ax2-5x+b>0的解集為{x|-3<x<-2},求不等式6x2-5x+a>0的解集. 解析:由題意,方程ax2-5x+b=0的兩根為-3、-2,由韋達(dá)定理得 則所求不等式為6x2-5x-1>0,解之得x<-或x>1. 4.關(guān)于x的不等式組的整數(shù)解的集合為{-2},求實(shí)數(shù)k的取值范圍. 解析:不等式組可化為, ∵x=-2,(如下圖) ∴(2x+5)(x+k)<0必為-<x<-k,-2<-k≤3,得-3≤k<2.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 函數(shù)與方程教案 蘇教版必修1 2019 2020 年高 數(shù)學(xué) 函數(shù) 方程 教案 蘇教版 必修
鏈接地址:http://m.appdesigncorp.com/p-2633565.html