購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
南京理工大學(xué)泰州科技學(xué)院
畢業(yè)設(shè)計(論文)外文資料翻譯
系 部: 機械工程系
專 業(yè): 機械工程及自動化
姓 名: 徐昕晏
學(xué) 號: 05010244
外文出處: Michael Montemerlo and
Sebastian Thrun
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導(dǎo)教師評語:
翻譯與外文資料的內(nèi)容基本相符,結(jié)構(gòu)基本完整,語言也比較通順,沒有大的語法錯誤。
簽名:
年 月 日
注:請將該封面與附件裝訂成冊。
附件1:外文資料翻譯譯文
高速撞擊:局部映射問題的解決方法
摘要
局部同步以及對地圖中周圍環(huán)境的檢測能力是自動機器人的首要考慮條件。然而,少數(shù)類似的問題增大了在現(xiàn)實環(huán)境中所要處理的陸標(biāo)數(shù)目。以克爾曼過濾器為基礎(chǔ)的算法,比如,需要時間來綜合處理每個檢測傳感器上所傳達的二次陸標(biāo)。這個報告中的快速撞擊,一種循環(huán)估算機械手姿勢以及陸標(biāo)位置次序的算法。以對數(shù)形式在地圖上顯示具體坐標(biāo)。這一算法通過對產(chǎn)品要求的精確分析來規(guī)劃機械手的工作路徑。該算法已經(jīng)成功地在多達 50,000個陸標(biāo)上運行,客觀條件遠遠好于以前。實驗結(jié)果比較了快速撞擊運算法則分別在模擬和真是世界中里的優(yōu)勢和局限性。
介紹
同步局限影射的問題,比如撞擊,已經(jīng)在機械可動裝置技術(shù)中引起廣泛的注意。撞擊處理諸如利用機械手測量地圖中的建筑陸標(biāo)問題。因為機械手運動受制于誤差,映射問題必然導(dǎo)致機械手的局部問題—撞擊。一個同步本土化機械手的能力以及對外界環(huán)境的反映是機械手自動化的關(guān)鍵問題。
撞擊問題算法的優(yōu)勢被介紹到鍛造工序報告中,我的以及基斯曼。這份報告介紹了廣泛卡曼過濾器估算機械手位置坐標(biāo)的方法。在后來的十年里,這種方法被廣泛運用于農(nóng)業(yè)機械中,作為最近的指導(dǎo)報告。最近的研究已經(jīng)把重心集中在增大這種方法的運用規(guī)模上,超過幾百個坐標(biāo)和運算法則來處理這些數(shù)據(jù)。
EFK方法的主要瓶頸問題是它復(fù)雜的運算。感應(yīng)器更新需要時間二次的坐標(biāo)數(shù)字的計算。這一個復(fù)雜事實的桿共分散基地維護藉著克爾曼過濾器有機械要素,全部定即使只是一個陸標(biāo)被觀察被更新。二次方程式的復(fù)雜行限制了陸標(biāo)的數(shù)目。這種方式只能處理少數(shù)的含有數(shù)百萬特征的自然環(huán)境模型。研究所對這一缺點進行了長期的研究。
在這個報告中,我們從一貝斯定理觀點來研究撞擊問題。圖 1舉例說明一生長于蓋然性的模型(活動區(qū)網(wǎng)絡(luò)之下的撞擊實驗的大量合集。在個別項目中,機械手姿勢,指示.機械手隨著時間進行功能控制,指示. 每一個陸測量,指示.是那個位置的功能 陸標(biāo)測量和機械手姿勢當(dāng)測量被采取的時候從這一個線圖顯示撞擊問題展現(xiàn)重要的獨立條件. 尤其,機械手的指導(dǎo)路徑.客觀的坐標(biāo)測量.舉例來說, 如果給我們提供了機械手的精確路徑,坐標(biāo)的問題就可以解決,而每個坐標(biāo). 這個觀察先前被墨菲[12] 研究過,他發(fā)明了一個有效的粒子過濾算法映射技術(shù)。
基于這篇觀察報告,這篇論文描述了一個被稱作高速撞擊的有效撞擊運動規(guī)律。高速撞擊實驗把撞擊問題簡化為一個局部的機器撞擊問題。由裝在機器手上的儀器來進行標(biāo)記的收集估算。正如在參考文獻[12]中所評論的那樣,這些現(xiàn)象是直觀的,因為自然條件下的撞擊問題的緣故。高速撞擊通過使用一個改裝過的粒子加速器來測量機械手的后部路徑。每個粒子控制克爾曼加速器來測量K粒子在一定條件路徑下的位置陸標(biāo)。如參考文獻[5, 13]Rao-Blackwellized粒子加速器的例子就是所呈現(xiàn)現(xiàn)象的規(guī)律。落實這個天真想法的計算機算法需要MK的時間。M是下圖中的粒子數(shù)。
圖1 撞擊問題
機械手從姿勢S1按照U1,U2。。。。UX的序列開始運動。當(dāng)它移動時,它檢測周圍的陸標(biāo),在時間t=1時,它檢測到了兩個陸標(biāo)中的。測量代號Z(范圍或方位)。在時間t=1時,它檢測到了另一個陸標(biāo),而在時間t=3時,它再一次檢測到了陸標(biāo)。撞擊問題的核心是通過控制U和測量Z來估算陸標(biāo)的位置和機械手的路徑。陰影部分闡述了在這一獨立條件下他們之間的關(guān)系。
粒子加速器和K粒子是陸標(biāo)的數(shù)字符號。我們建立了一種以數(shù)枝模型為基礎(chǔ)的數(shù)據(jù)結(jié)構(gòu)來放慢高速撞擊的時間,使它比現(xiàn)在基于撞擊算法的EKF更快。我們同樣可以擴充高速撞擊的算放來適應(yīng)新的數(shù)據(jù)協(xié)會和未知的陸標(biāo)符號,這意味著我們的方法可以被推廣到所有學(xué)術(shù)討論的撞擊問題。
實驗通過使用物理機器人和模擬機器人來表明高速撞擊算法能比現(xiàn)今的方法更好地處理量的大小次序問題。我們同樣發(fā)現(xiàn)在特定的情況下,陸標(biāo)K數(shù)目的增長導(dǎo)致了粒子M樹目的輕微減少,需要產(chǎn)生精確的地圖——然而在其他情況下,由于粒子數(shù)目的關(guān)系,對精確
地圖的要求數(shù)量可能大到難以想象的地步。
撞擊問題的定義
撞擊問題,正如學(xué)術(shù)界對撞擊的定義那樣,被很好的描述成一個Markov鏈概率問題。機械手在時間t的姿勢將被表示成符號。因為機械手在平臺上的操作——所有我們實驗的工作箱,姿勢包括機械手在平臺上的XY軸方向和頭部方向的協(xié)調(diào)。
姿勢按照一定的規(guī)則改變,通常依照以下的運動模型。
(1)
這里,ST是機械手控制UT以及先前姿勢ST-1的功能狀態(tài)。在可動機械手裝置中,這個運動規(guī)律屬于無時間變化的一般化的機械運動學(xué)。
機械手環(huán)境控制著K粒子的固定陸標(biāo)。沒個陸標(biāo)由它的空間位置所表示,例如是K=1,2,3,4…..K. 沒有損失的概率,我們可以想象在平面上陸標(biāo)的點的方式存在,所以位置有固定的兩個數(shù)字所確定.
為了反映環(huán)境,機械手能檢測陸標(biāo).比如,它可以檢測一個陸標(biāo)的范圍和方位,與圖表上的XY坐標(biāo)想聯(lián)系.對時間t的測量被表示成ZT.在時間t的測量結(jié)果將被標(biāo)記成Zt。機械手通常能同時檢測到多個陸標(biāo),我們假設(shè)測量傳感器能精確檢測每個陸標(biāo)并給每個陸標(biāo)以標(biāo)記符號。為了數(shù)學(xué)上的便利這個慣例被獨立地繼承下來。它沒有移動的限制,因為被檢測多重陸標(biāo)每個階段可按一定次序進行處理。測量感應(yīng)器由概率定理所規(guī)范,通常依照以下的測量模式:。這里是所有陸標(biāo)中的一組,而
是在時間t檢測到的復(fù)式陸標(biāo)。例如,在圖1中,當(dāng)N1=1,N2=2而N3=1時,機械手檢測到第一個陸標(biāo),然后第二個陸標(biāo),最后再檢測第一個陸標(biāo)。許多測量模式都假設(shè)機械手能檢測陸標(biāo)的范圍和方位,被測量噪音所限制。變量Nt通常被認為是常量。大多數(shù)學(xué)術(shù)上的理論研究都假設(shè)信息是統(tǒng)一或者不一致的,陸標(biāo)是可以獨立確定下來的。實際方法是使用最大可能性測量方法來檢測空中的通信信息,當(dāng)每個陸標(biāo)之間有足夠的距離時工作良好。通過這篇報告我們可以簡單推測出陸標(biāo)是可以確定的,但我們?nèi)詫⒂懻摐y量通信數(shù)據(jù)技術(shù)的發(fā)展。
我們現(xiàn)在準(zhǔn)備將撞擊問題公式化。多數(shù)時候,撞擊問題就是從檢測結(jié)果和控制過程中確定陸標(biāo)的位置和機械手的位置??赡艿脑?,這些由后部所表示,我們使用手寫體t來表示時間變量。如果條件是已知的,撞擊問題就簡單明了了:。
正如介紹中所討論的那樣,當(dāng)明確了機械手的路徑和變量條件后,所有獨立陸標(biāo)是可以確定下來的。這個獨立條件是高速撞擊算法的基礎(chǔ)。
高速撞擊的相似性
我們從一個重要的被我們熟知的粒子開始我們的討論。砰然聲問題的有條件獨立特性暗示,在后的者能依下列各項被因素:按照一定順序排列,問題能被分解進入之內(nèi)估計問題,一個結(jié)束估計后部的問題機械手小徑之中。
和估計定線的問題也是K粒子的路標(biāo)符號。砰然聲問題:機械手從姿勢移動透過一個控制的順序,因為它移動,它觀察附近的陸標(biāo)。在時間, 它觀察陸標(biāo)在二個陸標(biāo)中,測量被指示(范圍和橋承).在時間, 它觀察另一個陸標(biāo),,而且在時間, 它觀察再次。砰然聲問題是與估計陸標(biāo)的定線有關(guān)和那控制的機械手的小徑而且測量灰色蔭影舉例說明一個有條件的獨立關(guān)系。顆粒過濾器和陸標(biāo)的數(shù)目是。我們發(fā)展減少轉(zhuǎn)動的一個以樹枝狀模型為基礎(chǔ)的數(shù)據(jù)結(jié)構(gòu)高速的時候到制造它重要地比存在 EKF 建立的砰然聲運算法則快速。我們也和未知者把運算法則擴充到情形數(shù)據(jù)公會和陸標(biāo)的未知數(shù)目,成績我們的引橋能被延長到那完全類型的砰然聲問題在文學(xué)中討論。
實驗的結(jié)果使用一個實際的機械手和一個機械手模擬計舉例說明,運算法則能處理大小等級型較多的陸標(biāo)超過現(xiàn)今引橋。我們也可以在特定的情形中找那,一個
陸標(biāo)的數(shù)目對一個軟的還原導(dǎo)線顆粒的數(shù)目需要發(fā)生正確地圖-然而在其他者里面顆粒的數(shù)目必需的因為正確映射。
結(jié)論
我們正在討論的高速撞擊算法,是一個全新解決地圖檢測以及定位的有效手段。這個算法利用Rao-Blackwellized來表示次序,整合了粒子加速器以及克爾曼加速器的理論。類似于Murphy 的工作,高速撞擊是建立在撞擊問題內(nèi)部固有特性的基礎(chǔ)上的。然而,Murphy的方法堅持使用不連續(xù)的數(shù)值標(biāo)記地圖上的坐標(biāo)方格,因此極大地限制了地圖的尺寸。他的方法也沒有處理好數(shù)據(jù)的整合問題,并沒有使之在地圖上以方格形式呈現(xiàn)出來。
在高速撞擊問題中,陸標(biāo)估算利用樹枝狀模型來表示。對較后次序的時間進行了更新,M是粒子的數(shù)目而K是陸標(biāo)的符號。這與較復(fù)雜且普遍的克爾曼過濾器對撞擊問題的解決方法是有差異的。實驗結(jié)果表明相比于以前的方法高速撞擊能在地圖上建立天文數(shù)量級的陸標(biāo)數(shù)量。同時他們也表明在某種情況下,無論路標(biāo)數(shù)目的多少,少量粒子仍可運轉(zhuǎn)良好。
本科畢業(yè)設(shè)計說明書(論文) 第 28 頁 共28 頁
1 緒論
1.1 引言
什么是機器人呢?在國際上,關(guān)于機器人的定義很多,出發(fā)點各不相同,有的強調(diào)工業(yè)機器人特征,有的側(cè)重于智能機器人。美國機器人協(xié)會認為“機器人是一種用于移動各種材料、零件的工具或?qū)S醚b置;是通過程序動作來執(zhí)行各種任務(wù),并具有編程能力的多功能操作機”,顯然該定義指的是工業(yè)機器人,國際標(biāo)準(zhǔn)化組織(ISO)也有類似的定義。日本工業(yè)機器人協(xié)會(JIRA)定義機器人是一種裝備有記憶裝置和末端執(zhí)行裝置的且能夠完成各種移動來代替人類勞動的通用機器。有些定義直接把機器人分為工業(yè)機器人和智能機器人兩種情況來解釋,認為工業(yè)機器人是“一種能夠執(zhí)行與人的上肢(手和臂)類似動作的多功能機器”,智能機器人是“一種具有感覺和識別能力,并能夠控制自身行為的機器”。我國的蔣新松院士曾建議把機器人定義為“一種擬人功能的機械電子裝置”。盡管定義各不相同,但有共同之處,即認為機器人應(yīng)具有下列特征:
(1)像人或人的上肢,并能模仿人的動作;
(2)具有智力或感覺與識別能力;
(3)是人造的機械或機械電子裝置。
當(dāng)然,隨著機器人的進化和其智能的發(fā)展,這些定義很難涵蓋其本質(zhì),有必要修改[1]。
1.2 機器人的發(fā)展及技術(shù)
1.2.1 機器人的發(fā)展
20世紀(jì)40年代,伴隨著遙控操縱器和數(shù)控制造技術(shù)的出現(xiàn),關(guān)于機器人技術(shù)的研究開始出現(xiàn)。60年代美國的 Consolidatedcontry公司研制出第一臺機器人樣機,并成立了Unimation公司,定型生產(chǎn)了Unimate機器人。20世紀(jì)70年代以來,工業(yè)機器人產(chǎn)業(yè)蓬勃興起,機器人技術(shù)逐漸發(fā)展為專門學(xué)科。1970年,第一次國際機器人會議在美國舉行。經(jīng)過幾十年的發(fā)展,數(shù)百種不同結(jié)構(gòu)、不同控制系統(tǒng)、不同用途的機器人已進入了實用化階段。目前,盡管關(guān)于機器人的定義還未統(tǒng)一,但一般認為機器人的發(fā)展按照從低級到高級經(jīng)歷了三代。第一代機器人,主要指只能以“示教一再現(xiàn)”方式工作的機器人,其只能依靠人們給定的程序,重復(fù)進行各種操作。目前的各類工業(yè)機器人大都屬于第一代機器人。第二代機器人是具有一定傳感器反饋功能的機器人,其能獲取作業(yè)環(huán)境、操作對象的簡單信息,通過計算機處理、分析,機器人按照己編好的程序做出一定推理,對動作進行反饋控制,表現(xiàn)出低級的智能。當(dāng)前,對第二代機器人的研究著重于實際應(yīng)用與普及推廣上。第三代機器人是指具有環(huán)境感知能力,并能做出自主決策的自治機器人。它具有多種感知功能,可進行復(fù)雜的邏輯思維,判斷決策,在作業(yè)環(huán)境中可獨立行動。第三代機器人又稱為智能機器人,并己成為機器人學(xué)科的研究重點,但目前還處于實驗室探索階段。機器人技術(shù)己成為當(dāng)前科技研究和應(yīng)用的焦點與重心,并逐漸在工農(nóng)業(yè)生產(chǎn)和國防建設(shè)等方面發(fā)揮巨大作用??梢灶A(yù)見到,機器人將在21世紀(jì)人類社會生產(chǎn)和生活中扮演更加重要的角色。
1.2.2 機器人技術(shù)
機器人學(xué)是一門發(fā)展迅速的且具有高度綜合性的前沿學(xué)科,該學(xué)科涉及領(lǐng)域廣泛,集中了機械工程、電氣與電子工程、計算機工程、自動控制工程、生物科學(xué)以及人工智能等多種學(xué)科的最新科研成果,代表了機電一體化的最新成就。機器人充分體現(xiàn)了人和機器的各自特長,它比傳統(tǒng)機器具有更大的靈活性和更廣泛的應(yīng)用范圍。機器人的出現(xiàn)和應(yīng)用是人類生產(chǎn)和社會進步的需要,是科學(xué)技術(shù)發(fā)展和生產(chǎn)工具進化的必然。目前,機器人及其自動化成套裝備己成為國內(nèi)外備受重視的高新技術(shù)應(yīng)用領(lǐng)域,與此同時它正以驚人的速度向海洋、航空、航天、軍事、農(nóng)業(yè)、服務(wù)、娛樂等各個領(lǐng)域滲透。目前,雖然機器人的能力還是非常有限的,但是它正在迅速發(fā)展。隨著各學(xué)科的發(fā)展和社會需要的發(fā)展,機器人技術(shù)出現(xiàn)了許多新的發(fā)展方向和趨勢,如網(wǎng)絡(luò)機器人技術(shù)、虛擬機器人技術(shù)、協(xié)作機器人技術(shù)、微型機器人技術(shù)和雙足步行機器人技術(shù)等。人們普遍認為,機器人技術(shù)將成為緊隨計算機技術(shù)及網(wǎng)絡(luò)技術(shù)之后的又一次重大的技術(shù)革命,它很可能將世界推向科學(xué)技術(shù)的新時代[2]。
1.3 雙足機器人的優(yōu)點及國內(nèi)外研究概況
1.3.1 雙足步行機器人的優(yōu)點
機器人是現(xiàn)代科學(xué)技術(shù)發(fā)展的必然產(chǎn)物,因為人們總是設(shè)法讓機器來代替人的繁重工作,從而發(fā)明了各種各樣的機器。機器的發(fā)展和其它事物一樣,遵循著由低級到高級的發(fā)展規(guī)律,機器發(fā)展的最高形式必然是機器人。而機器人發(fā)展的最高目標(biāo)是制造出像人一樣可以行走和作業(yè)的機器人,也就是擬人機器人。因為它具有良好的環(huán)境適應(yīng)性,并且這種優(yōu)秀品質(zhì)在高低不平的路面上以及具有障礙物的空間里更加突出,所以與之相關(guān)的問題己經(jīng)成為研究熱點。擬人機器人的研制工作開始于20世紀(jì)60年代,短短的幾十年時間內(nèi),其研制工作進展迅速。步行機器人的研制工作是其中一項重要內(nèi)容。目前,機器人的移動方式主要包括輪式、履帶式、爬行式、蠕動式以及步行等方式。對輪式和履帶式移動機器人的研究主要集中在自主運動控制上,如避障路徑規(guī)劃等。這兩種機器人過分依賴于周圍環(huán)境,應(yīng)用范圍受限。爬行和蠕動式機器人主要用于管道作業(yè),具有良好的靜動態(tài)穩(wěn)定性,但速度較低。常見的步行機器人有雙足、四足和六足等情況。自然界事實、仿生學(xué)以及力學(xué)分析表明:在具有許多優(yōu)點的步行機器人中,雙足步行機器人因其體積相對較小,對非結(jié)構(gòu)性環(huán)境具有較好的適應(yīng)性,避障能力強,移動盲區(qū)很小等優(yōu)良的移動品質(zhì),格外引人注目。首先,對于支撐路面,雙足步行機器人的要求很低,理論上只需要分散的、孤立的支撐點,就可以通過機器人自行選擇最佳的支撐點,獲得最佳的移動性能。而輪式移動機器人通常要求連續(xù)的、硬質(zhì)的支撐路面,對于惡劣的支撐路面,它只能被動的適應(yīng)。其次,在存在障礙物的情況下,雙足步行機器人能夠跨越與自身腿長相當(dāng)?shù)恼系K物,甚至跳越障礙,而輪式移動機器人僅能滾越尺寸小于輪子半徑的障礙物。機器人力學(xué)計算表明,足式步行機器人的能耗通常低于輪式和履帶式[7]。
1.3.2 雙足步行機器人的步行特點及研究意義
世界著名機器人專家,日本早稻田大學(xué)的加藤一郎教授曾經(jīng)指出“機器人應(yīng)當(dāng)具有的最大的特征之一是步行功能”。一般說來,機器人的步行方式有兩種,即靜態(tài)步行與動態(tài)步行。靜態(tài)步行是指低速步行,不考慮慣性力,機器人在行走過程中只需要滿足靜力平衡條件,即重心要始終保持在支撐腳區(qū)域內(nèi):動態(tài)步行與之不同,必須考慮慣性力的影響,行走過程中要滿足動態(tài)平衡,即控制系統(tǒng)的零力矩點(zMP)始終在支撐腳的穩(wěn)定區(qū)域內(nèi)。動態(tài)步行具有速度快效率高等優(yōu)點。靜態(tài)步行可以看作動態(tài)步行的特例。和輪式、履帶式、爬行式、蠕動式等機器人相比,雙足步行機器人在具有上述難以取代的優(yōu)越性的同時,也存在很多的技術(shù)難關(guān),穩(wěn)定步行和高速運動都困難的。雙足步行機器人系統(tǒng)存在著高階、強耦合、多變量及非線性等特性,這些特性使得雙足步行機器人的運動學(xué)和動力學(xué)的精確求解非常困難,而且也沒有十分理想的理論或方法來求解逆運動學(xué)和動力學(xué)解析解,只有外加一些限制條件,如能量消耗最小,峰值力矩最小來求解運動學(xué)和動力學(xué)的近似解,這往往導(dǎo)致了機器人的規(guī)劃運動與實際運動有較大的出入。所以,迄今為止雙足步行機器人還是以“靜步行”為主,特點是步速較低、步幅較小,其運動性能與人類相比還相距甚遠。由于步行機器人的發(fā)展受到機構(gòu)學(xué)、材料學(xué)、計算機技術(shù)、控制技術(shù)、微電子技術(shù)、通訊技術(shù)、傳感技術(shù)、人工智能、數(shù)學(xué)方法、仿生學(xué)等學(xué)科發(fā)展程度的制約,還處于實驗室研制階段,距離真正意義上的擬人機器人還有相當(dāng)?shù)木嚯x[10]。在這一領(lǐng)域內(nèi)還有許多的問題等待我們?nèi)ソ鉀Q。雙足步行是生物界最難的動作,它的完美實現(xiàn)必然要求機器人在結(jié)構(gòu)設(shè)計方面產(chǎn)生巨大的變革和創(chuàng)新,從而有力地推動相關(guān)學(xué)科的發(fā)展。同時,雙足步行機器人具有多關(guān)節(jié)、多驅(qū)動、多傳感器,而且具有冗余自由度,這給控制研究帶來很大困難,也相應(yīng)的給各種控制策略和優(yōu)化方法提供了理想的試驗平臺,因此,對雙足步行機器人的研究具有很高的理論價值,引起國內(nèi)外無數(shù)專家學(xué)者的矚目[4]。為了促進機器人技術(shù)在我國的發(fā)展,全國各地尤其是部分高校舉辦了各種類型的機器人大賽。中國機器人大賽是由中國自動化學(xué)會機器人競賽工作委員會和科技部高技術(shù)研究發(fā)展中心主辦的一個全國性的賽事。其中最為引人矚目的舞蹈機器人項目就是為了促進雙足步行機器人的發(fā)展而設(shè)立的。由于步行機器人的實現(xiàn)目前還存在很多技術(shù)難題,前幾屆由中國科技大學(xué)主辦的舞蹈機器人大賽基本上是以輪式機器人為主,還沒有出現(xiàn)步行機器人參賽。由此可見,雙足步行機器人的發(fā)展還有一段很長的路要走。研制雙足步行機器人的一項重要內(nèi)容就是步態(tài)規(guī)劃。所謂的步態(tài),是指在步行過程中,步行本體的身體各部位在時序和空間上的一種協(xié)調(diào)關(guān)系;步態(tài)規(guī)劃就是給出機器人各關(guān)節(jié)位置與時間的關(guān)系,是雙足步行機器人研制中的一項關(guān)鍵技術(shù),也是難點之一。步態(tài)規(guī)劃的好壞將直接影響到雙足步行機器人的行走穩(wěn)定性、美觀性以及各關(guān)節(jié)所需驅(qū)動力矩的大小等多個方面,已經(jīng)成為雙足步行機器人領(lǐng)域的研究熱點?;谏鲜鲈?,本課題擬進行雙足步行機器人的步態(tài)規(guī)劃研究,研制具有高度穩(wěn)定性的雙足步行機器人平臺,為進一步的擬人機器人研制奠定基礎(chǔ)。
1.3.3 國外研究概況
擬人機器人的研究是一個很誘人、難度很大的研究課題。關(guān)于這方面的研究日本走在了世界的前列。早稻田大學(xué)理工學(xué)部1973年建立了“人格化機器人”研究室,曾開發(fā)出不少擬人機器人系統(tǒng)。例如會演奏鋼琴的機器人、雙足步行機器人以及電動假肢等。該研究室的帶頭人高西淳夫教授說:“人格化機器人的一個很大特征就是它具有與人類相近的結(jié)構(gòu)。機器人與人類的共存是我們研究開發(fā)的課題之一”。當(dāng)今世界,有“機器人王國”之稱的日本在雙足步行機器人研究領(lǐng)域處于絕對領(lǐng)先地位,具有代表性的研究機構(gòu)有加藤實驗室、日本早稻田大學(xué)、日本東京大學(xué)、日本東京理工學(xué)院、日本機械學(xué)院、松下電工、本田公司和索尼公司等。日本早稻田大學(xué)的加藤一郎教授于1968年率先展開了雙足步行機器人的研制工作,并先后研制出場系列樣機若干年研制出P-1平面自由度步行機器人,該機器人具有六個自由度,每條腿有骼、膝、踩三個關(guān)節(jié);關(guān)節(jié)處使用人造橡膠肌肉,通過充氣、排氣引起肌肉收縮,肌肉的收縮牽引關(guān)節(jié)轉(zhuǎn)動從而實現(xiàn)步行。1971年,研制出WAP-3型雙足機器人,仍采用人工肌肉,具有11個自由度,能在平地、斜坡和階梯上行走。該機器人重130kg高0.9m,實現(xiàn)步幅15cm,每步455的靜態(tài)步行;同年又研制出WL-5雙足步行機器人,該機器人采用液壓驅(qū)動,具有11個自由度,下肢作三維運動,上軀體左右擺動以實現(xiàn)雙足機器人重心的左右移動。1973年,在WAP-5的基礎(chǔ)上配置機械手及人工視覺、聽覺等裝置組成自主式WAROT-1。1980年,推出WL-9DR(Dynam Refined)雙足機器人,該機器人采用預(yù)先設(shè)計步行方式的程序控制方法,通過對步行運動的分析及重復(fù)實驗設(shè)計步態(tài)軌跡,用設(shè)計出的步態(tài)控制機器人的步行運動,該機器人采用了以單腳支撐期為靜態(tài),雙腳切換期為動態(tài)的準(zhǔn)動態(tài)步行方案,實現(xiàn)了步幅45cm,每步95的準(zhǔn)動態(tài)步行。1984年,研制出采用踝關(guān)節(jié)力矩控制的WL-10DR雙足機器人,增加了踝關(guān)節(jié)力矩控制,將一個步行周期分為單腳支撐期和轉(zhuǎn)換期。1986年,又成功研制了wL- 12(R)雙足機器人,該機器人通過軀體運動來補償下肢的任意運動,實現(xiàn)了步行周期23秒,步幅30cm的平地動態(tài)步行。代表雙足步行機器人和擬人機器人研究最高水平的是本田公司和索尼公司。本田公司從1986年至今已經(jīng)推出了Pl,PZ,P3系列機器人,在PZ和P3中,使用了大量的傳感器:陀螺儀(測定上體偏轉(zhuǎn)的角度和角速度)、重力傳感器、六維力/力矩傳感器和視覺傳感器等,利用這些傳感器感受機器人的當(dāng)前狀態(tài)和外界環(huán)境的變化,并基于這些傳感器對下肢各關(guān)節(jié)的運動做出調(diào)整,實現(xiàn)動態(tài)步行。并且于2000年11月20日,推出了新型雙足步行機器人,實現(xiàn)了與人一樣自然行走的新姿態(tài)控制技術(shù),自律連續(xù)移動技術(shù)以及可順暢地與人同步動作的技術(shù)等,使其更容易適應(yīng)人類的生活空間,通過提高雙腳步行技術(shù)使其更接近人類的步行方式。雙腳步行技術(shù)方面采用了新開發(fā)的技術(shù),雙腳步行技術(shù)的基礎(chǔ)上組合了新的“預(yù)測運動控制功能”,它可以實時預(yù)測以后的動作,并且據(jù)此事先移動重心來改變步調(diào)。以往由于不能進行“預(yù)測運動控制”,當(dāng)從直行改為轉(zhuǎn)彎時,必須先停止直行動作,然后才可以轉(zhuǎn)彎。索尼公司于2000年11月21日推出了人形娛樂型機器人SDR-3X(Sony DreamRobot一3x)。SDR一3X:頭部2個、軀干2個、手臂 4×2個、下肢和足部6×2個,共計24個自由度。2001年7月,川田工業(yè)公司的航空機械業(yè)務(wù)部開發(fā)出了研究用類人型雙足步行機器人。該機器人身高146.8cm,體重55kg,關(guān)節(jié)自由度全身合計32個。通過使用具有搖桿(Joystick)的操作部件,可以令該機器人向任何方向自由步行。該產(chǎn)品在腳趾處安裝有關(guān)節(jié),從而提高了步行的速度,并且能夠爬上最高階差為25cm的樓梯。2002年6月12日,機器人世界杯國際委員會宣布將從2002年6月20日起在日本的福岡與韓國的釜山舉行機器人世界杯大賽。從該屆起,將增設(shè)雙足步行機器人的足球賽事。這標(biāo)志著機器人選手參加的世界杯又向人類走近了一步。該大賽的目標(biāo)是“在2050年之前,制造出能夠戰(zhàn)勝當(dāng)時世界冠軍隊的自律型機器人隊伍”,這一夢想將由雙足步行機器人來實現(xiàn)。2005年1月12日,由日本產(chǎn)業(yè)技術(shù)綜合研究所的比留川博等人開發(fā)出一臺取名“H-2”擬人機器人亮相東京。該機器人身高154cm,體重 58kg。研究人員先請民間藝術(shù)家跳舞,用特殊攝像機拍攝后將畫面輸入電腦,并對手、腳、頭、腰等32個部位的動作進行解析,然后把有關(guān)解析數(shù)據(jù)輸入給機器人,最后利用這些數(shù)據(jù)來控制機器人手的動作和腳步等,使“HRP-2”可以和人一樣動作連貫,翩翩起舞。除了日本之外,美國、英國、法國等也對步行機器人做了大量的基礎(chǔ)理論研究和樣機研制工作,并取得一定成就。美籍華人鄭元芳博士是美國雙足步行機器人研究者中一位非常杰出的人物。他基于神經(jīng)網(wǎng)絡(luò)研制出兩臺雙足步行機器人,分別命名為SD-1和SD-2,SD-1具有4個自由度,SD-2具有8個自由度,其中SD-2是美國第一臺真正類人的雙足步行機器人。他利用SDR-2于 1986年實現(xiàn)了平地上的前進、后退以及左、右側(cè)行;1987年,又成功地實現(xiàn)了動態(tài)步行。1971年至1986年間,英國牛津大學(xué)的Witt等人制造并完善了一個雙足步行機器人,該機器人在平地上行走良好,步速達0.23m/s。前面所述的研究主要是關(guān)于主動式步行機器人(靠關(guān)節(jié)電機驅(qū)動)。加拿大的d·McGeer主要研究被動式雙足步行機器人,即在無任何外界輸入的情況下,靠重力和慣性力實現(xiàn)步行運動。1989年,他建立了平面型的雙足步行機構(gòu),兩腿為直桿機構(gòu),沒有膝關(guān)節(jié),每條腿上各有一個小電機來控制腿的伸縮,無任何主動控制和能量供給,放在斜坡上,可依靠重力實現(xiàn)動態(tài)步行。目前,主動和被動式雙足步行機器人在研究上很少互相借鑒。
1.3.4 國內(nèi)研究概況
國內(nèi)雙足步行機器人的研制工作起步較晚,我國是從20世紀(jì)80年代開始雙足步行機器人領(lǐng)域的研究和應(yīng)用的。1986年,我國開展了“七五”機器人攻關(guān)計劃,1987年,我國的“863”高技術(shù)計劃將機器人方面的研究開發(fā)列入其中。目前我國從事機器人研究與應(yīng)用開發(fā)的單位主要是高校和有關(guān)科研院所等。最初我國進行機器人技術(shù)研究的主要目的是跟蹤國際先進的機器人技術(shù),隨后取得了一定的成就。自1985年以來,相繼有幾所高校進行了這方面的研究并取得了一定的成果,其中以哈爾濱工業(yè)大學(xué)和國防科技大學(xué)較為成果顯著。在自然科學(xué)基金和國家“863”計劃的支持下,哈爾濱工業(yè)大學(xué)自1985年開始研制雙足步行機器人,迄今為止己經(jīng)完成三個型號的研制工作。1988年哈工大HIT-I型雙足步行機器人問世,HIT-I型雙足步行機器人具有10個自由度,重100kg,高1.2m,關(guān)節(jié)由直流伺服電機驅(qū)動,屬于靜步態(tài)行走。HIT-Ⅰ具有12個自由度,該機器人髖關(guān)節(jié)和腿部結(jié)構(gòu)采用了平行四邊形結(jié)構(gòu)。HIT-Ⅱ具有12個自由度,踝關(guān)節(jié)采用兩電機交叉結(jié)構(gòu),同時實現(xiàn)了兩個自由度,腿部結(jié)構(gòu)采用了圓筒形結(jié)構(gòu)。HIT-Ⅲ實現(xiàn)了靜步態(tài)行和動步態(tài)步行,能夠完成前/后行、側(cè)行、轉(zhuǎn)彎、上下臺階及上斜坡等動作。1988年春,國防科技大學(xué)成功研制出我國第一臺平面型六自由度的雙足機器人,能夠?qū)崿F(xiàn)前進、后退和上下樓梯;1989年,他們又實現(xiàn)了準(zhǔn)動態(tài)步行。1990年,進一步實現(xiàn)了實驗室環(huán)境下的全方位行走;2000年2月30日,國防科技大學(xué)在自1986年開始研制的雙足步行機器人的基礎(chǔ)上,成功研制出我國第一臺擬人機器人“先行者”,并通過國家“863”項目專家組驗收。與該校1990年成功研制的雙足步行機器人相比,其行走頻率從過去的6秒每步提高到每秒兩步;從只能平地靜態(tài)步行,到能快速自如地動態(tài)步行;從只能在己知環(huán)境下步行,到可在小偏差、不確定環(huán)境下行走,實現(xiàn)了多項關(guān)鍵技術(shù)突破。2003年1月取名為BRH-1的仿人機器人在北京理工大學(xué)通過國家“863”項目組的驗收。這個機器人身高1.58m,體重76kg,具有32個自由度,每小時能夠行走1km,步幅0.33m。驗收專家認為該機器人在系統(tǒng)集成、步態(tài)規(guī)劃和控制系統(tǒng)等方面實現(xiàn)了重大的突破。仿人機器人課題組負責(zé)人、北京理工大學(xué)教授李科杰認為:目前“BHR-1”仿人機器人己經(jīng)能夠根據(jù)自身力覺、平衡覺等感知機器人自身的平衡狀態(tài)和地面高度的變化,實現(xiàn)在未知地面上的穩(wěn)定行走和太極拳表演,使中國成為繼日本之后,第二個研制出無外接電纜行走,集感知、控制、驅(qū)動、電源和機構(gòu)于一體的高水平仿人機器人國家。
2 雙足機器人的本體結(jié)構(gòu)設(shè)計
2.1 引言
雙足步行機器人本體的機械結(jié)構(gòu)是研究機器人的基礎(chǔ),結(jié)構(gòu)的好壞直接影響到機器人后續(xù)的研究工作。以雙足類人結(jié)構(gòu)特征為基礎(chǔ),各研究結(jié)構(gòu)研制的雙足機器人在自由度,驅(qū)動方式,重量,高度與結(jié)構(gòu)特征等方面都存在很大的差異。機器人結(jié)構(gòu)的不同,其控制的方式也有所不同。
2.2 兩足機器人的結(jié)構(gòu)分析
兩足步行機器人是對人類自身的模仿,但是人類總共有上肢52對,下肢62對,背部112對,胸部52對,腰部8對,頸部16對,頭部25對之多的肌肉。從目前的科學(xué)發(fā)展情況來看,要控制具有400個雙作用式促進器的多變量系統(tǒng)是不可能的,因此,在設(shè)計步行機械時,人們只考慮移動的基本功能。例如,只考慮在平地或者具有已知障礙物的情況下的步行。鄭元芳博士從仿生學(xué)的角度對類人機器人的腿部自由度配置進行了深入的研究,得出關(guān)節(jié)扭矩最小條件下兩足步行機器人的自由度配置。他認為髖部和踝部設(shè)兩個自由度,可使機器人在不平地面上站立,骸部再加一個扭轉(zhuǎn)自由度,可改變行走方向,踝關(guān)節(jié)處加一個旋轉(zhuǎn)自由度可使腳板在不規(guī)則表面上落地,這樣機器人的腿部需要有7×2個自由度(骸關(guān)節(jié)3個,膝關(guān)節(jié)1個,踝關(guān)節(jié)3個)。但是,無論現(xiàn)在的兩足步行機器人還是擬人機器人都還只能在規(guī)則路面上行走,所以各研究機構(gòu)都選擇了6×2個自由度(踝關(guān)節(jié)3個,膝關(guān)節(jié)1個,踝關(guān)節(jié)2個),如:哈爾濱工業(yè)大學(xué)的HIT-m、國防科技大的“先行者”、本田公司的AsIMO和索尼公司的SDR和QRIO。具有6×2個自由度的機器人的機械結(jié)構(gòu)和控制都特別的復(fù)雜。按照在能完成研究目標(biāo)的情況下,自由度最少的設(shè)計原則,在過去的四十年中,為了不同的研究目標(biāo),人們設(shè)計了許多具有不同自由度的兩足步行機器人,按照行走過程中的穩(wěn)定方式,兩足步行機器人一般分為三類:
(1) 靜態(tài)機器人,這類步行機器人的COM(Censer of Mass)始終處于支撐多邊形(單腳支撐期為支撐腳的輪廓線,雙腳支撐期為兩只腳的外邊沿所圍成的凸多邊形)內(nèi),所以只能實現(xiàn)靜態(tài)行走;
(2) 動態(tài)機器人,這類步行機器人有踝關(guān)節(jié),依靠踝關(guān)節(jié)來保證它的ZMP點(Zero Momeni Censer)始終處于支撐多邊形內(nèi),所以可以實現(xiàn)靜態(tài)行走和動態(tài)行走;
(3) 全動態(tài)機器人,這類步行機器人的踝關(guān)節(jié)沒有驅(qū)動,甚至沒有踝關(guān)節(jié)所以,支撐多邊形在單腳支撐期縮小成一個點,在雙腳支撐期縮小為一條線段,所以,這類機器人不能保持靜態(tài)平衡,只能實現(xiàn)動態(tài)行走[8, 9]。
自由度數(shù)最少的兩足步行機器人只有一個自由度,如圖2.1所示。這類機器人沒有軀干,兩條腿直接鉸鏈在一起。這類機器人理論上只有一個自由度,實際上,為了防止擺動腿擺動時和地面干涉,這兩條腿都必須是可以伸縮的。加上這兩個平移自由度,這個機器人實際上有3個自由度。它的運動學(xué)模型是平面的,沒有側(cè)向運動,在徑向平面內(nèi)的運動象一個兩腳圓規(guī)。在雙腳支撐期,沒有冗余自由度。這類兩足步行機器人不能保持靜態(tài)平衡,屬于完全動態(tài)機器人,在僅受重力作用時,可以在斜面上行走。
圖2.1 一個自由度的兩足步行機器人
2.3 雙足機器人的自由度配置
我們設(shè)計了一個雙足步行機器人模型,如圖2.2所示。顯著的結(jié)構(gòu)特征就是采用多關(guān)節(jié)型結(jié)構(gòu)。行走機構(gòu)能實現(xiàn)平地前后行、爬斜坡等功能。動力源采用舵機直接動,這樣不但可以實現(xiàn)結(jié)構(gòu)緊湊、傳動精度高以及大大增加關(guān)節(jié)所能達到的最大角度,而且驅(qū)動源全為電機,便于集中控制和程序化控制。
圖2.2 雙足步行機器人模型
圖2.2模仿人類,肩關(guān)節(jié)三個自由度,前向和側(cè)向自由度,一般不考慮轉(zhuǎn)動的自由度。肘關(guān)節(jié)兩個自由度前向和側(cè)向自由度,腕關(guān)節(jié)一個自由度。踝關(guān)節(jié)有兩個自由度,前向和側(cè)向自由度:膝關(guān)節(jié)只有一個前向自由度,髖關(guān)節(jié)處要模擬人類髖關(guān)節(jié)行為理論上要求有三個正交的自由度,但在機器人直線前進時只需要正交的前向和側(cè)向自由度,同樣不考慮[5, 6]。
2.3.1 頭部及身體結(jié)構(gòu)規(guī)劃
在頭部裝有一個舵機,可實現(xiàn)Z軸一個自由度的轉(zhuǎn)動。身體內(nèi)部空心以降低重心,提高機器人步行的穩(wěn)定性。頭部結(jié)構(gòu)如圖2.3所示。身體結(jié)構(gòu)如圖2.4,圖2.5所示。
圖2.3 頭部零件
圖2.4 機器人的身體結(jié)構(gòu)
圖2.5 機器人的身體結(jié)構(gòu)
2.4 驅(qū)動方式的選擇
驅(qū)動器用于驅(qū)動機構(gòu)本體各關(guān)節(jié)的運動功率。目前驅(qū)動方式主要有氣動、液壓和伺服電機。驅(qū)動器在雙足步行機器人中的作用就相當(dāng)于人體的肌肉,如果把連桿以及關(guān)節(jié)想象為機器人的骨骼,那么驅(qū)動器就起到肌肉的作用,它通過移動或轉(zhuǎn)動連桿來改變機器人的構(gòu)型。驅(qū)動器必須有足夠的功率對負載加速或者減速。同時,驅(qū)動器本身要精確、靈敏、輕便、經(jīng)濟、使用方便可靠且易于維護[11 ,12]。
目前己經(jīng)有很多種驅(qū)動器,常用的有以下幾種:(1)電動機:舵機、伺服電機、步進電機、直接驅(qū)動電機;(2)液壓驅(qū)動器;(3)氣壓驅(qū)動器;(4)形狀記憶合金驅(qū)動器;(5)磁致伸縮驅(qū)動器等。液壓驅(qū)動是由高精度的剛體和活塞一起完成的?;钊蛣傮w采用滑動配合,壓力油從液壓缸的一端進入,把活塞推向液壓缸的另一端,調(diào)節(jié)液壓缸內(nèi)部活塞兩端的液體壓力和進入液壓缸的油量即可控制活塞的運動。以前在大型的工業(yè)機器人系統(tǒng)中,液壓系統(tǒng)使用非常普遍,它具有驅(qū)動力矩大,功率重量比較高,工作平穩(wěn)可靠,系統(tǒng)響應(yīng)速度快以及傳動中的力、速度、易于實現(xiàn)自動控制等特點;但是也存在成本高、重量大、工藝復(fù)雜以及可能發(fā)生泄漏甚至高溫爆炸等缺點,同時因其固有的笨重性,不宜用作雙足步行機器人的驅(qū)動器。
氣動具有成本低、控制簡單的特點。氣動裝置在原理上和液壓系統(tǒng)非常相似,它以壓縮空氣為氣源驅(qū)動氣缸做直線或旋轉(zhuǎn)運動,并用人工或電磁閥進行控制。氣動調(diào)節(jié)閥的制造精度要求沒有液壓元件高,易于高速控制,無污染,但由于位置控制困難,只能用于1/2自由度(受限的關(guān)節(jié),被限定為幾個可能的值)的開關(guān)類型關(guān)節(jié),實現(xiàn)插入、點位搬運等簡單操作,并且其工作穩(wěn)定性差,壓縮空氣需要除水。液壓驅(qū)動與氣壓驅(qū)動不能實現(xiàn)自帶能源,更直接決定了其難于應(yīng)用到雙足步行機器人系統(tǒng)中。步行機器人各個關(guān)節(jié)都是旋轉(zhuǎn)副。在廉價的計算機問世之前,控制旋轉(zhuǎn)運動的主要困難是計算量大,所以當(dāng)時認為采用直線驅(qū)動方式比較好。今天,電機驅(qū)動和控制的費用已經(jīng)大大降低,大功率晶體管己經(jīng)廣泛使用,只需要采用幾個晶體管就可以驅(qū)動一臺大功率伺服電機。同樣,微型計算機的價格也越來越便宜,計算機費用在機器人總費用中所占的比例大大降低。甚至在每個關(guān)節(jié)或自由度中都采用一個微處理器?;谏鲜龇治隹梢钥闯?,電機驅(qū)動具有成本低、精度高、易于控制、可靠且維修方便等特點,是最常用的機器人驅(qū)動器。直接驅(qū)動電動機,形狀—記憶合金等驅(qū)動器目前還處于研究和開發(fā)階段,在不遠的將來會變得非常有用。
本雙足步行機器人采用舵機直接驅(qū)動。舵機是一種最早應(yīng)用在航模運動中的動力裝置,它的控制信號是一個脈寬調(diào)制信號,所以很方便和數(shù)字系統(tǒng)進行接口。只要能產(chǎn)生標(biāo)準(zhǔn)的控制信號的數(shù)字設(shè)備都可以用來控制舵機,比如PLC、單片機等。而且舵機體積緊湊,便于安裝,輸出力矩大,穩(wěn)定性好,控制簡單,所以舵機己經(jīng)廣泛地應(yīng)用于機器人領(lǐng)域[15 ,16]。
3 雙足步行機器人的3D圖
3.1 整體結(jié)構(gòu)圖
機器人全身一共裝有17個舵機,控制包括頭部,手臂,手肘,大腿,小腿,腳踝等部分的一共17個自由度。在頭部以下的舵機控制Z軸的自由度,使機器人人具有搖頭功能。手臂部分一共有3×2個舵機,控制手臂擺動,手肘的內(nèi)外擺動,小手臂的轉(zhuǎn)動。大腿部分一共有5×2個舵機,主要控制機器人的步行動作。如圖3.1,圖3.2所示。
圖3.1 機器人的正面
圖3.2 機器人的背面
3.2 頭部零件圖
頭部材料采用鋁制合金板,圖3.3角鐵部分和小孔方便與頸部連接。圖3.4空隙處方便安裝舵機,角鐵處可與身體部分連接。
圖3.3 頭部部件圖
圖3.4 頸部部件圖
3.3 身體零件圖
身體兩側(cè)的空隙處方便安裝舵機,中下側(cè)的兩塊鐵板將前后兩塊身體主板相連接以提高結(jié)構(gòu)穩(wěn)定性。最下側(cè)的鐵條作為身體與腿部的連接點。身體內(nèi)部安裝控制系統(tǒng)。如圖3.5,圖3.6所示。身體主板上一共設(shè)有2×5個小孔。身體上側(cè)的小孔用于連接身體前后兩塊主板。中間兩側(cè)的2×2個小孔用于安裝舵機并加大身體主板連接的穩(wěn)定性。身體主板下側(cè)一共有10個小孔,分上下兩排排列。上排4×2個小孔用于安裝腿部的兩個舵機并作為身體主板于腿部的連接點。下排2個小孔用于安裝連接前后兩個身體主板的鐵片,以提高結(jié)構(gòu)的穩(wěn)定性。身體主體板塊的設(shè)計盡可能使用較少材料,不僅減少上身材料,降低機器人的整體重心,也節(jié)省材料。使用鋁合金材料,因為鋁的密度較小而強度較高。使用普通的工具就能容易的實現(xiàn)切割和彎曲。鋁材料一般可以做成各種形狀。在原計劃中,要實現(xiàn)身體的轉(zhuǎn)身功能,但在實際操作過程中,我們發(fā)現(xiàn)對支撐點的技術(shù)難度較高,在結(jié)構(gòu)上難以支持上身的重量。希望可以在以后的研究可以解決這些問題。
圖3.5 身體部件圖
圖3.6 身體部件圖
4 液晶顯示
4.1 引言
在嵌入式系統(tǒng)的應(yīng)用中,為系統(tǒng)擴充外部設(shè)備一直是用戶所關(guān)注的問題。LCD屏幕就是相當(dāng)重要的外圍設(shè)備之一。本節(jié)將對LCD系統(tǒng)如何實現(xiàn)進行研究。選擇液晶顯示的原因是基于它友好的人機交互界面,能夠進行良好人機信息交互。它是以ARM920T處理器為核心研發(fā)的。能夠顯示文字,例如:
熱烈慶祝南京理工大學(xué)泰州科技學(xué)院建校5周年
4.2 LCD系統(tǒng)的實現(xiàn)
4.2.1 STN型彩色LCD模塊介紹
STN液晶顯示器與液晶材料、光線的干涉現(xiàn)象有關(guān),因此顯示的色調(diào)以淡綠色與橘色為主。STN液晶顯示器中,使用X、Y軸交叉的單純電極驅(qū)動方式,即X、Y軸由垂直與水平方向的驅(qū)動電極構(gòu)成,水平方向驅(qū)動電壓控制顯示部分為亮或暗,垂直方向的電極則負責(zé)驅(qū)動液晶分子的顯示。STN液晶顯示屏加上彩色濾光片,并將單色顯示矩陣中的每一像素分成三個子像素,分別通過彩色濾光片顯示紅、綠、藍三原色,也可以顯示出色彩。單色液晶屏及灰度液晶屏都是STN液晶屏。研究課題中使用液晶顯示屏主要考慮的參數(shù)有外形尺寸、分辨率、點寬、色彩模式等。以下是EmbestEdukit2實驗板所選用的液晶屏為LRH9J515XA STN/BW型,可視屏幕的尺寸及參數(shù)示意如圖4.1所示[17]。
圖4.1 液晶屏參數(shù)示意圖
4.2.2 LCD系統(tǒng)的組成與結(jié)構(gòu)
LCD控制器主要提供液晶屏顯示數(shù)據(jù)的傳送、時鐘和各種信號的產(chǎn)生與控制功能。S3C2410處理器的LCD控制器主要部分框圖如圖4.2所示。
圖4.2 LCD控制器框圖
S3C2410 LCD控制器用于傳輸顯示數(shù)據(jù)和產(chǎn)生控制信號。除了控制信號之外,S3C2410還提供數(shù)據(jù)端口供顯示數(shù)據(jù)傳輸,也就是VD[23:0]。LCD控制器包含REGBANK、LCDCDMA、VIDPRCS、TIMEGEN和LPC3600等控制模塊。REGBANK中有17個可編程的寄存器組和256×16調(diào)色板內(nèi)存用于配置LCD控制器。LCDCDMA是一個專用的DMA,它負責(zé)自動地將幀緩沖區(qū)中的顯示數(shù)據(jù)發(fā)往LCD驅(qū)動器。通過特定的DMA,顯示數(shù)據(jù)可以不需要CPU的干涉,自動地發(fā)送到屏幕上。VIDPRCS將LCDCDMA發(fā)送過來的數(shù)據(jù)變換為合適的格式之后通過VD[23:0]發(fā)送到LCD驅(qū)動器。TMIEGEN包含可編程邏輯用于支持不同LCD驅(qū)動器對時序以及速率的需求。VFRAME、VLINE、VCLK、VM等控制信號由TIMEGEN產(chǎn)生。在LCD控制的33個輸出接口中有24個負責(zé)用戶數(shù)據(jù)輸出,9個用于控制[18]。
4.2.3 LCD系統(tǒng)電路設(shè)計
進行液晶屏控制電路設(shè)計時必須提供電源驅(qū)動、偏壓驅(qū)動以及LCD顯示控制器。由于S3C2410處理器本身自帶LCD控制器,而且可以驅(qū)動本課題所選用的液晶屏,所以控制電路的設(shè)計可以省去顯示控制電路,只需進行電源驅(qū)動和偏壓驅(qū)動的電路設(shè)計即可。具體電路設(shè)計圖及液晶管腳說明如圖4.3所示。電源驅(qū)動與偏壓驅(qū)動如圖4.4所示。
圖4.3 液晶電路結(jié)構(gòu)框圖
圖4.4 電源驅(qū)動與偏壓驅(qū)動電路
4.3 觸摸屏控制技術(shù)的實現(xiàn)
4.3.1 觸摸屏的特性
觸摸屏(TSP:Touch Screen Panel)由于其體積小、輕便和接口簡單等特點,成為一種在嵌入式系統(tǒng)中廣泛應(yīng)用的輸入設(shè)備。按技術(shù)原理可分為五類:矢量壓力傳感式、電阻式、電容式、紅外線式和表面聲波式,其中電阻式觸摸屏在嵌入式系統(tǒng)中用的較多[20]。常用的觸摸屏由于實現(xiàn)技術(shù)的不同,導(dǎo)致特性各異。
4.3.2 觸摸屏工作原理
TSP由觸摸檢測部件和觸摸屏控制器組成。觸摸檢測部件安裝在顯示器前端,用于檢測用戶觸摸位置,接受信息后傳送至觸摸屏控制器;控制器的主要作用是接收觸摸信息并轉(zhuǎn)換成觸點坐標(biāo)傳至CPU,并接收和執(zhí)行CPU下達的命令。Embest EduKit III采用四線式電阻觸摸屏,點數(shù)為320×240,其被按下的狀態(tài)如圖4.5所示
圖4.5 觸摸屏按下時示意圖
圖4.6 本實驗臺所使用的觸摸屏外觀圖
如圖4.6所示,電阻觸摸屏采用一塊帶有統(tǒng)一電阻外表面的玻璃板。聚酯表層緊貼在玻璃面上,通過小的透明絕緣顆粒與玻璃面分開。聚酯層外表面堅硬耐用,內(nèi)表面有一個傳導(dǎo)層。當(dāng)觸摸屏幕時,傳導(dǎo)層與玻璃面表層電子接觸,產(chǎn)生的電壓就是觸摸位置的模擬表示[20]。等效電路示意圖如圖4.7,圖4.8所示。
\
圖4.7 等效電路示意圖
圖4.8 觸摸屏的等效電路
4.3.3 S3C2410處理器TS控制器
處理器集成的TSP只使用到3個寄存器,即ADC控制寄存器(ADCCON)、觸摸屏控制寄存器(ADCTSC)和ADC數(shù)據(jù)寄存器(ADCDAT)。
ADC控制寄存器(ADCCON)
ADCCON[15]:A/D轉(zhuǎn)換結(jié)束標(biāo)志
0:A/D轉(zhuǎn)換正在進行 1:A/D轉(zhuǎn)換結(jié)束
ADCCON[14]:A/D轉(zhuǎn)換預(yù)分頻允許
0:不允許預(yù)分頻 1:允許預(yù)分頻
ADCCON[13:6]:預(yù)分頻值PRSCVL
PRSCVL在0到255之間,實際的分頻值為PRSCVL+1
ADCCON[5:3]:模擬信道輸入選擇
000 = AIN0 001 = AIN1 010 = AIN2 011 = AIN3
100 = AIN4 101 = AIN5 110 = AIN6 111 = AIN7
ADCCON[2]:待機模式選擇位
0:正常模式 1:待機模式
ADCCON[1]:A/D轉(zhuǎn)換讀-啟動選擇位
0:禁止Start-by-read 1:允許Start-by-read
ADCCON[0]:A/D轉(zhuǎn)換器啟動
0:A/D轉(zhuǎn)換器不工作 1:A/D轉(zhuǎn)換器開始工作
觸摸屏控制寄存器(ADCTSC)
ADCTSC[8]:保留,必須為0
ADCTSC[7]:選擇YMON輸出值
0:輸出為0 1:輸出為1
ADCTSC[6]:選擇YPON輸出值
0:輸出為0 1:輸出為1
ADCTSC[5]:選擇XMON輸出值
0:輸出為0 1:輸出為1
ADCTSC[4]:選擇XPON輸出值
0:輸出為0 1:輸出為1
ADCTSC[3]:上拉開關(guān)使能
0:上拉使能 1:上拉禁止
ADCTSC[2]:自動按順序轉(zhuǎn)換X、Y坐標(biāo)選擇位
0:正常模式 1:自動按順序轉(zhuǎn)換X、Y坐標(biāo)使能
ADCTSC[1:0]:手工設(shè)置X、Y坐標(biāo)轉(zhuǎn)換
00:無操作 01:X坐標(biāo)轉(zhuǎn)換
10:Y坐標(biāo)轉(zhuǎn)換 11:等待中斷模式
ADC數(shù)據(jù)寄存器(ADCDAT0,ADCDAT1)
ADCDAT0[15]:等待中斷模式,Stylus電平選擇
0:低電平 1:高電平
ADCDAT0[14]:自動按照先后順序轉(zhuǎn)換X、Y坐標(biāo)
0:正常ADC順序 1:按照先后順序轉(zhuǎn)換
ADCDAT0[13:12]:自定義X、Y位置
00:無操作模式 01:測量X位置
10:測量Y位置 11:等待中斷模式
ADCDAT0[11:10]:保留
ADCDAT0[9:0]:X坐標(biāo)轉(zhuǎn)換數(shù)據(jù)值
ADCDAT1[15:10]與ADCDAT0[15:10]功能相同
ADCDAT0[9:0]:Y坐標(biāo)轉(zhuǎn)換數(shù)據(jù)值
A/D轉(zhuǎn)換的轉(zhuǎn)換時間計算
例如PCLK為50MHz,PRESCALER=49;所有10位轉(zhuǎn)換時間為:
50MHz/(49+1)=1MHz
轉(zhuǎn)換時間為1/(1M/5 cycles)=5us
A/D轉(zhuǎn)換器的最大工作時鐘為2.5MHz,最大的采樣率可以達到500ksps。
4.3.4 觸摸屏的電路設(shè)計
當(dāng)手指觸摸屏幕時,平常絕緣的兩層導(dǎo)電層在觸摸點位置產(chǎn)生一個接觸,控制器檢測到這個接通后,產(chǎn)生中斷通知CPU進行A/D轉(zhuǎn)換;具體原理:當(dāng)觸摸屏被按下時,首先導(dǎo)通FET管組Q602和Q604,X軸回路加上+5V電源,同時將FET管組Q1和Q3關(guān)閉;再啟動處理器的A/D轉(zhuǎn)換通AIN7,電路電阻與觸摸屏按下產(chǎn)生的電阻輸出分量電壓,并由A/D轉(zhuǎn)換器將電壓值數(shù)字化,計算出X軸的坐標(biāo)。中斷處理程序通過導(dǎo)通不同MOS管組,使接觸部分與控制器電路構(gòu)成電阻電路,并產(chǎn)生一個電壓降作為坐標(biāo)值輸出。其電路如圖4.9所示。
圖4.9 觸摸屏坐標(biāo)轉(zhuǎn)換控制電路
顯示模塊選用的是周立功SmartARM 3250通用教學(xué)/競賽/工控開發(fā)平臺,它全面深入地支持μC/OS-II、WinCE和Linux操作系統(tǒng),它完全按照工業(yè)級標(biāo)準(zhǔn)(EMC/EMI)設(shè)計,精心設(shè)計的電路提供多達7路串口、IrDA接口、USB OTG接口、帶電氣隔離的CAN-bus接口、CF卡接口、SD/MMC卡接口、I2S音頻接口、以太網(wǎng)接口等,滿足各種應(yīng)用要求。
由于這款芯片是新款,到畢業(yè)設(shè)計結(jié)束,芯片還沒有到位,所以沒有完成液晶顯示的調(diào)試過程,希望在以后的設(shè)計中完善。
結(jié)束語
本論文是關(guān)于機器人頭部身體結(jié)構(gòu)的設(shè)計。從了解機器人開始,到對機器人總體結(jié)構(gòu)的認識,對機器人人步行過程中的平穩(wěn)性研究,是對我所學(xué)四年知識的一個綜合檢查,也是對我獨立思考和解決問題的一次考驗。在此次畢業(yè)設(shè)計中,我們團隊不僅在書面上對機器人進行了結(jié)構(gòu)的分析,控制程序的編排,更是通過大家的實踐做出了成品。通過這3個月的設(shè)計,使我對自己所學(xué)的知識有了更深入了解;在指導(dǎo)老師幫助下,通過收集各種有關(guān)資料所解決的畢業(yè)設(shè)計問題。在這次畢業(yè)設(shè)計當(dāng)中,了解到了機器人的發(fā)展歷史,發(fā)展前景以及國內(nèi)外的研究現(xiàn)狀,初步完成了對機器人身體結(jié)構(gòu)的設(shè)計。通過查找資料以及老師的指導(dǎo),初步了解了液晶顯示的相關(guān)理論。但是對機器人步行穩(wěn)定性的研究仍停留在初步,導(dǎo)致結(jié)構(gòu)設(shè)計中的一些不合理性,對液晶顯示方面的相關(guān)較深入的理論仍理解不夠。整個畢業(yè)設(shè)計對機器人的整體結(jié)構(gòu)進行了初步規(guī)劃并做成實體,對全身自由度特別是手部以及腿部做到了合理分配,使機器人基本實現(xiàn)行走功能。但在行走穩(wěn)定連續(xù)性方面仍顯不足,在液晶顯示方面也只是停止與簡單文字的顯示,沒有更多的人機交互功能。在身體結(jié)構(gòu)設(shè)計中,原本計劃的轉(zhuǎn)身功能也沒有實現(xiàn),其原因主要是支撐點的建構(gòu)難度過高。希望下一屆能夠彌補我們這一屆的遺憾。
不過正是這些遺憾讓我認識到了自己的不足,深深感到對知識的追求是沒有止境的,這些遺憾更是激勵我以后努力工作,認真學(xué)習(xí)。從實踐中總結(jié)經(jīng)驗,在學(xué)習(xí)中收獲知識。
由于自身經(jīng)驗不足,這次畢業(yè)設(shè)計一定很多不足之處。希望老師們多多指教,對老師們的指導(dǎo)表示深深的感謝。
致 謝
在此,我對指導(dǎo)老師劉艷老師對我的嚴(yán)格要求和對我在設(shè)計上的幫助,表示衷心的感謝!他們在繁忙的工作期間,對我畢業(yè)設(shè)計的完成付出了大量的心血,多次給我提出深刻而具有指導(dǎo)性的意見,讓我能夠很好的按時完成畢業(yè)設(shè)任務(wù)。在畢業(yè)設(shè)計完成之時,謹向恩師們表示最衷心的感謝,并致以崇高的敬意。此外,還要衷心感謝機械工程系的其他曾經(jīng)給予我指導(dǎo)、問題解答的老師,以及與我朝夕相處、共同研討解決設(shè)計中碰到疑難的同窗學(xué)友。我還要以我的畢業(yè)設(shè)計成果,真誠地、深深地感謝一直對我關(guān)心、支持、并寄予厚望的父母!同時也對我的團隊,徐超,許峰,吳玉坤,黃俊表示衷心的感謝,通過我們共同的努力,完成了整個工程,這些離不開他們的熱情幫助。
參 考 文 獻
[1] 張永學(xué). 雙足機器人步態(tài)規(guī)劃及步行控制研究[M]. 哈爾濱工業(yè)大學(xué)博士學(xué)位論文. 2001.
[2] Ishida Tatsuzo, KurokiYoshihiro, Yamaguehi Jiniehi. Meehanieal System of a Small Biped Entertainment Robot[M]. IEEE Iniemational Confereneeon Intelligent Robots and Systems, 2003.
[3] KanekoKenji, KanehiroFumio, KajitaShuuji, etal.Ota. Design of Prot-type humanoid robots and Systems[M]. 2002.
[4] YokoiKazuhito, Kanehiro Fumio, Kaneko Kenji, etal. ExPerimental study of humanoid robot HRP-1S. Intemational Journal of Robotics Researeh[M]. 2004.
[5] 趙星寒, 劉濤. 從51到ARM—32位嵌入式系統(tǒng)入門[M]. 北京:北京航空航天
大學(xué)出版社. 2005.
[6] 潘琢金, 施國君. CsoslFxXx高速SOC單片機原理及應(yīng)用[M]. 北京:北京航空
航天大學(xué)出版社. 2002.
[7] 樓然苗, 李光飛. 51系列單片機開發(fā)實例[M]. 北京:北京航空航天大學(xué)出版社. 2003.
[8] 童長飛, C805lF系列單片機開發(fā)與C語言編程[M]. 北京:北京航空航天大學(xué)出版社. 2005 .
[9] 何玉潔. 數(shù)據(jù)庫原理與應(yīng)用[M]. 北京:機械工業(yè)出版社. 2002.
[10] 郭強. 液晶屏顯示技術(shù)[M]. 北京:電子工業(yè)出版社. 2002.
[11] 郝文化. ProtelDX夕電路原理圖與PcB設(shè)計[M]. 北京:機械工業(yè)出版社. 2004.
[12] 藏鐵鋼. ProtelD舒電路設(shè)計與應(yīng)用[M]. 北京:北京鐵道出版社. 2005.
[13] 劉志遠. 兩足機器人動態(tài)行走研究[D]. 哈爾濱工業(yè)大學(xué)博士論文. 1991.
[14] 劉志遠, 戴紹安, 裴潤, 張栓, 傅佩深. 零力矩點與兩足機器人動態(tài)行走穩(wěn)定性的關(guān)系[J]. 哈爾濱工業(yè)大學(xué)學(xué)報.
[17] 紀(jì)軍紅. HIT-I雙足步行機器人步態(tài)規(guī)劃研究[D]. 哈爾濱工業(yè)大學(xué)博士論文,2000.
[18] 麻亮, 紀(jì)軍紅, 強文義, 傅佩深[M]. 基于力矩傳感器的雙足機器人在線模糊步態(tài)調(diào)整器設(shè)計. 控制與決策. 2000.
[19] 竺長安. 兩足步行機器人系統(tǒng)分析、設(shè)計及運動控制[D]. 國防科技大學(xué)博士論文. 1992
[20] 馬宏緒. 兩足步行機器人動態(tài)步行研究[D].國防科技大學(xué)博士論文.1995
[2l] 馬宏緒, 應(yīng)偉福, 張彭. 兩足步行機器人姿態(tài)穩(wěn)定性分析[M]. 計算技術(shù)與自動化. 1997.
[22] 馬宏緒,張彭,張良起.兩足步行機器人動態(tài)步行的步態(tài)控制與實時位控制方法機器人[M]. 2005.