高中數(shù)學(xué) 1_2《排列》教案1 蘇教版選修2-31
《高中數(shù)學(xué) 1_2《排列》教案1 蘇教版選修2-31》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 1_2《排列》教案1 蘇教版選修2-31(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.2排列教學(xué)目的:1.理解排列、排列數(shù)的概念,了解排列數(shù)公式的推導(dǎo);2.能用“樹(shù)型圖”寫出一個(gè)排列中所有的排列;3能用排列數(shù)公式計(jì)算.教學(xué)重點(diǎn):排列、排列數(shù)的概念.教學(xué)難點(diǎn):排列數(shù)公式的推導(dǎo).授課類型:新授課.課時(shí)安排:1課時(shí).內(nèi)容分析:分類計(jì)數(shù)原理是對(duì)完成一件事的所有方法的一個(gè)劃分,依分類計(jì)數(shù)原理解題,首先明確要做的這件事是什么,其次分類時(shí)要根據(jù)問(wèn)題的特點(diǎn)確定分類的標(biāo)準(zhǔn),最后在確定的標(biāo)準(zhǔn)下進(jìn)行分類.分類要注意不重復(fù)、不遺漏,保證每類辦法都能完成這件事.分步計(jì)數(shù)原理是指完成一件事的任何方法要按照一定的標(biāo)準(zhǔn)分成幾個(gè)步驟,必須且只需連續(xù)完成這幾個(gè)步驟后才算完成這件事,每步中的任何一種方法都不能完成這件事.分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的地位是有區(qū)別的,分類計(jì)數(shù)原理更具有一般性,解決復(fù)雜問(wèn)題時(shí)往往需要先分類,每類中再分成幾步.在排列、組合教學(xué)的起始階段,不能嫌羅嗦,教師一定要先做出表率并要求學(xué)生嚴(yán)格按原理去分析問(wèn)題.只有這樣才能使學(xué)生認(rèn)識(shí)深刻、理解到位、思路清晰,才會(huì)做到分類有據(jù)、分步有方,為排列、組合的學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).分類計(jì)數(shù)原理和分步計(jì)數(shù)原理既是推導(dǎo)排列數(shù)公式、組合數(shù)公式的基礎(chǔ),也是解決排列、組合問(wèn)題的主要依據(jù),并且還常需要直接運(yùn)用它們?nèi)ソ鉀Q問(wèn)題,這兩個(gè)原理貫穿排列、組合學(xué)習(xí)過(guò)程的始終.搞好排列、組合問(wèn)題的教學(xué)從這兩個(gè)原理入手帶有根本性.排列與組合都是研究從一些不同元素中任取元素,或排成一排或并成一組,并求有多少種不同方法的問(wèn)題.排列與組合的區(qū)別在于問(wèn)題是否與順序有關(guān).與順序有關(guān)的是排列問(wèn)題,與順序無(wú)關(guān)是組合問(wèn)題,順序?qū)ε帕小⒔M合問(wèn)題的求解特別重要.排列與組合的區(qū)別,從定義上來(lái)說(shuō)是簡(jiǎn)單的,但在具體求解過(guò)程中學(xué)生往往感到困惑,分不清到底與順序有無(wú)關(guān)系.教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.分類計(jì)數(shù)原理:做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法.那么完成這件事共有種不同的方法.2.分步計(jì)數(shù)原理:做一件事情,完成它需要分成n個(gè)步驟,做第一步有種不同的方法,做第二步有種不同的方法,做第n步有種不同的方法,那么完成這件事有種不同的方法.分類計(jì)數(shù)原理和分步計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法種數(shù)的問(wèn)題,區(qū)別在于:分類計(jì)數(shù)原理針對(duì)的是“分類”問(wèn)題,其中各種方法相互獨(dú)立,每一種方法只屬于某一類,用其中任何一種方法都可以做完這件事;分步計(jì)數(shù)原理針對(duì)的是“分步”問(wèn)題,各個(gè)步驟中的方法相互依存,某一步驟中的每一種方法都只能做完這件事的一個(gè)步驟,只有各個(gè)步驟都完成才算做完這件事.應(yīng)用兩種原理解題:1.分清要完成的事情是什么;2.是分類完成還是分步完成,“類”間互相獨(dú)立,“步”間互相聯(lián)系;3.有無(wú)特殊條件的限制.二、講解新課:1.問(wèn)題:?jiǎn)栴}1從甲、乙、丙3名同學(xué)中選取2名同學(xué)參加某一天的一項(xiàng)活動(dòng),其中一名同學(xué)參加上午的活動(dòng),一名同學(xué)參加下午的活動(dòng),有多少種不同的方法?分析:這個(gè)問(wèn)題就是從甲、乙、丙3名同學(xué)中每次選取2名同學(xué),按照參加上午的活動(dòng)在前,參加下午活動(dòng)在后的順序排列,一共有多少種不同的排法的問(wèn)題,共有6種不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的對(duì)象叫做元素.問(wèn)題2從這四個(gè)字母中,每次取出3個(gè)按順序排成一列,共有多少種不同的排法?分析:解決這個(gè)問(wèn)題分三個(gè)步驟:第一步先確定左邊的字母,在4個(gè)字母中任取1個(gè),有4種方法;第二步確定中間的字母,從余下的3個(gè)字母中取,有3種方法;第三步確定右邊的字母,從余下的2個(gè)字母中取,有2種方法.由分步計(jì)數(shù)原理共有:432=24種不同的方法,用樹(shù)型圖排出,并寫出所有的排列.由此可寫出所有的排法.2排列的概念:從個(gè)不同元素中,任?。ǎ﹤€(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列.說(shuō)明:(1)排列的定義包括兩個(gè)方面:取出元素,按一定的順序排列;(2)兩個(gè)排列相同的條件:元素完全相同,元素的排列順序也相同.3排列數(shù)的定義:從個(gè)不同元素中,任?。ǎ﹤€(gè)元素的所有排列的個(gè)數(shù)叫做從個(gè)元素中取出元素的排列數(shù),用符號(hào)表示.注意區(qū)別排列和排列數(shù)的不同:“一個(gè)排列”是指:從個(gè)不同元素中,任取個(gè)元素按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從個(gè)不同元素中,任?。ǎ﹤€(gè)元素的所有排列的個(gè)數(shù),是一個(gè)數(shù).所以符號(hào)只表示排列數(shù),而不表示具體的排列.4排列數(shù)公式及其推導(dǎo):由的意義:假定有排好順序的2個(gè)空位,從個(gè)元素中任取2個(gè)元素去填空,一個(gè)空位填一個(gè)元素,每一種填法就得到一個(gè)排列,反過(guò)來(lái),任一個(gè)排列總可以由這樣的一種填法得到,因此,所有不同的填法的種數(shù)就是排列數(shù)由分步計(jì)數(shù)原理完成上述填空共有種填法,=.由此,求可以按依次填3個(gè)空位來(lái)考慮,=,求以按依次填個(gè)空位來(lái)考慮,排列數(shù)公式:()說(shuō)明:(1)公式特征:第一個(gè)因數(shù)是,后面每一個(gè)因數(shù)比它前面一個(gè)少1,最后一個(gè)因數(shù)是,共有個(gè)因數(shù);(2)全排列:當(dāng)時(shí)即個(gè)不同元素全部取出的一個(gè)排列.全排列數(shù):(叫做n的階乘).三、講解范例:例1計(jì)算:(1);(2);(3)解:(1)3360;(2)720;(3)360.例2(1)若,則,(2)若則用排列數(shù)符號(hào)表示解:(1)17,14(2)若則例3(1)從這五個(gè)數(shù)字中,任取2個(gè)數(shù)字組成分?jǐn)?shù),不同值的分?jǐn)?shù)共有多少個(gè)?(2)5人站成一排照相,共有多少種不同的站法?(3)某年全國(guó)足球甲級(jí)(A組)聯(lián)賽共有14隊(duì)參加,每隊(duì)都要與其余各隊(duì)在主客場(chǎng)分別比賽1次,共進(jìn)行多少場(chǎng)比賽?解:(1);(2);(3).四、課堂練習(xí):1四支足球隊(duì)爭(zhēng)奪冠、亞軍,不同的結(jié)果有( )種10種12種16種2信號(hào)兵用3種不同顏色的旗子各一面,每次打出3面,最多能打出不同的信號(hào)有( )3種6種1種27種3且則用排列數(shù)符號(hào)表示為( )45人站成一排照相,甲不站在排頭的排法有( )24種72種96種120種5給出下列問(wèn)題:有10個(gè)車站,共需要準(zhǔn)備多少種車票?有10個(gè)車站,共有多少中不同的票價(jià)?平面內(nèi)有10個(gè)點(diǎn),共可作出多少條不同的有向線段?有10個(gè)同學(xué),假期約定每?jī)扇送娫捯淮?,共需通話多少次??0個(gè)同學(xué)中選出2名分別參加數(shù)學(xué)和物理競(jìng)賽,有多少中選派方法?以上問(wèn)題中,屬于排列問(wèn)題的是(填寫問(wèn)題的編號(hào)).6若,則以為坐標(biāo)的點(diǎn)共有個(gè).7從參加乒乓球團(tuán)體比賽的5名運(yùn)動(dòng)員中選出3名進(jìn)行某場(chǎng)比賽,并排定他們的出場(chǎng)順序,有多少種不同的方法?8從4種蔬菜品種中選出3種,分別種植在不同土質(zhì)的3塊土地上進(jìn)行試驗(yàn),有多少中不同的種植方法?9計(jì)算:(1)(2)10分別寫出從這4個(gè)字母里每次取出兩個(gè)字母的所有排列;11寫出從這六個(gè)元素中每次取出3個(gè)元素且必須含有元素的所有排列.答案:1.C2.B3.C4.B5.6.637.608.249.348;64.10.共有個(gè):ab,ac,ad,ba,bc,bd,ca,cb,cd,da,db,dc.11.共有個(gè),具體的排列略五、小結(jié):排列的概念;排列數(shù)的概念及排列數(shù)公式;排列及排列數(shù)的區(qū)別.六、課后作業(yè):.七、板書(shū)設(shè)計(jì)(略).八、課后記- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 排列 高中數(shù)學(xué) 1_2排列教案1 蘇教版選修2-31 _2 教案 蘇教版 選修 31
鏈接地址:http://m.appdesigncorp.com/p-11970097.html