高二數(shù)學(xué)上學(xué)期期中試題 文34
《高二數(shù)學(xué)上學(xué)期期中試題 文34》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)上學(xué)期期中試題 文34(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2016年“荊、荊、襄、宜四地七??荚嚶?lián)盟”高二期中聯(lián)考 數(shù)學(xué)(文)試題 一、選擇題 1.在對16和12求最大公約數(shù)時,整個操作如下:16-12=4,12-4=8,8-4=4,由此可以看出12與16的最大公約數(shù)是:( ) A.16 B.12 C.8 D.4 2.已知全集為R,集合,則下列關(guān)系正確的是( ) A. B. C. D. 3.已知函數(shù)的圖象向右平移個單位后與原圖象重合,則的最小值是( ) A.6 B.3 C. D. 4.設(shè)為直線,為不同的平面,下列命題正確的是( ) A.若 B. 若 C. 若 D. 若 5.直線與圓的位置關(guān)系是( ) A.相切 B.相交 C.相離 D.不確定 6.在△中,為邊上任意一點(diǎn),為上靠近的一個三等分點(diǎn),若,則的值為( ) A. B. C. D.1 7.已知函數(shù),下列結(jié)論正確的是( ) A.的圖象關(guān)于對稱 B. 的圖象關(guān)于對稱 C. 的圖象關(guān)于軸對稱 D. 不是周期函數(shù) 8.已知某空間幾何體的三視圖如圖所示,且俯視圖是一個半圓內(nèi)切一個小圓( ) A.該幾何體的表面積為 B.該幾何體的體積為 C. 該幾何體的表面積為 D. 該幾何體的體積為 9.已知點(diǎn)滿足過點(diǎn)的直線與圓相交于兩點(diǎn),則的最小值為( ) A.8 B. C. D.10 10.高二年級學(xué)生體檢后,對學(xué)生體重進(jìn)行抽樣統(tǒng)計,其中一個男生體重的樣本直方圖如圖所示,若這個樣本的中位數(shù)為62,則的值為( ) A. 0.044 B. 0.039 C. 0.01 D. 0.04 11. 執(zhí)行如圖所示的程序框圖,若輸出的值為4,則的取值范圍是( ) A. B. C. D. 12.已知直線與兩坐標(biāo)軸分別交于兩點(diǎn).當(dāng)△的面積取最小值時(為坐標(biāo)原點(diǎn)),則的值為( ) A. B. C. D. 二、填空題 13.直線被圓截得的弦長為 . 14.已知服從上的均勻分布,則成立的概率為 . 15.一個球面上有四個點(diǎn),若兩兩垂直,且,則該球的表面積是 . 16.圓(為正常數(shù))上任一點(diǎn)到及的距離之比為常數(shù),則 , . 三、解答題 17.(12分) 某小學(xué)對五年級的學(xué)生進(jìn)行體質(zhì)測試,已測得五年級一班30名學(xué)生的跳遠(yuǎn)成績(單位:cm),用莖葉圖統(tǒng)計如圖,男生成績在175cm以上(包括175cm)定義為合格,成績在175cm以下(不含175cm)定義為“不合格”;女生成績在165以上(包括165cm)定義為“合格”,成績在165cm以下(不含165cm)定義為“不合格”. (1)求男生跳遠(yuǎn)成績的中位數(shù). (2)以此作為樣本,估計該校五年級學(xué)生體質(zhì)的合格率. (3)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個容量為5的樣本,再從這個樣本中抽取2人,求取出的2人都是女生的概率. 18.(12分) 已知函數(shù)在是增函數(shù). (1)當(dāng)時,求的取值范圍. (2)若沒有零點(diǎn),的值. 19.(12分) 在數(shù)列中,. (1)求證數(shù)列為等比數(shù)列. (2)求數(shù)列的前項(xiàng)和. 20.(12分) E D C B A 第20題圖 如圖所示,在三棱錐中,平面,,,點(diǎn)是線段的中點(diǎn). (1)如果,求證:平面平面. (2)如果,求直線和平面所成的角的余弦值. 21.(12分) 已知圓心坐標(biāo)為的圓與軸及直線相切于兩點(diǎn),另一圓與圓外切(圓在圓的斜上方),且與軸及直線分別切于兩點(diǎn).(如圖) (1)求圓的方程. (2)求線段的長. (3)仿作一系列圓 圓與圓外切,(圓在圓的斜上方)與軸及相切,圓的圓心坐標(biāo)為,求數(shù)列的通項(xiàng)公式. 22.(10分) 在△中,三個內(nèi)角所對的邊分別為,已知函數(shù)是偶函數(shù),且. (1)求. (2)若,求角. 2016年“荊、荊、襄、宜四地七??荚嚶?lián)盟” 高二期中聯(lián)考 數(shù)學(xué)(文)試 題參考答案 一、選擇題 題號 1 2 3 4 5 6 7 8 9 10 11 12 答案 D D A C C B A C A A D C 二、填空題 13. 14. 15. 16. 三、解答 17.(1)男生跳遠(yuǎn)成績數(shù)據(jù)為偶數(shù)個 中位數(shù)為(cm)…………………………(4分) (2)由莖葉圖可知,樣本中男生有8人合格,女生有10人合格. 樣本的合格率為=60﹪. 該校五年級學(xué)生體質(zhì)的合格率估計為60﹪.……………………(8分) (3)女生總?cè)藬?shù)為18人 所占比例為 女生應(yīng)抽取的人數(shù)為人. 從5人中抽取2人有10種方式,抽取的2 人都是女生的有3種 抽取的2人都是女生的概率是.………………………………(12分) 18.(1)時 …………………………(3分) 在上是增函數(shù) 即. 所求的范圍為.…………………………(6分) (2) 關(guān)于點(diǎn)對稱. 即……………………………………(8分) 沒有零點(diǎn) ………………………(10分) 又 ……………………………………………………(12分) 另:本題也可以先求再求. 19.(1) 即是公比為2的等比數(shù)列……………………………………(5分) (2)時,. 是首項(xiàng)為1,公比為2的等比數(shù)列 ………………………………(7分) …… ……………………(10分) ……………………(11分) …………………………(12分) 20.(1)證明: 平面,平方 又,在平面上 平面 又平面 平面平面…………………………(6分) (2)取線段的中點(diǎn),聯(lián)結(jié), 在△中, 平面, 平面 為直線和平面所成的角………………(9分) 在△中,, 在△中, 在△中, 在△中, 故直線與平面所成角的余弦值為……………………(12分) 21. (1)設(shè)圖的圓心 圓與軸相切 ① 圓與相切 ② 又圓的半徑,圓心 ,即 ③ 由①②③ 圓的方程為:………………(4分) (2)由已知可得, ……………………(6分) (3)圓,與相切 可證, 即, 即, 又圓與圓外切 ,又圓與軸相切 即 化簡證 又 是以為首項(xiàng), 公比為3的等比數(shù)列 ………………………………(12分) 22.(1) 是偶函數(shù) ……………………(2分) …………………………(4分) ………………(6分) (2) 由正弦定理得:………………(8分) 從而…………………(10分)- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高二數(shù)學(xué)上學(xué)期期中試題 文34 數(shù)學(xué) 上學(xué) 期期 試題 34
鏈接地址:http://m.appdesigncorp.com/p-11820737.html