吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文
《吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文》由會員分享,可在線閱讀,更多相關(guān)《吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、函數(shù)與方程 一、 知識梳理:(閱讀教材必修1第85頁—第94頁) 1、 方程的根與函數(shù)的零點 (1) 零點:對于函數(shù),我們把使0的實數(shù)x叫做函數(shù)的零點。這樣,函數(shù)的零點就是方程0的實數(shù)根,也就是函數(shù)的圖象與x軸交點的橫坐標(biāo),所以方程0有實根。 (2)、函數(shù)的零點存在性定理:如果函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有那么,在區(qū)間(a,b)內(nèi)有零點,即存在c,使得=0,這個C 也就是方程0的實數(shù)根。 (3)、零點存在唯一性定理:如果單調(diào)函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有那么,在區(qū)間(a,b)內(nèi)有零點,即存在唯一c,使得=0,這個C 也就是方程0的實
2、數(shù)根。 (4)、零點的存在定理說明: ①求在閉間內(nèi)連續(xù),滿足條件時,在開區(qū)間內(nèi)函數(shù)有零點; ②條件的函數(shù)在區(qū)間(a,b)內(nèi)的零點至少一個; ③間[a,b]上連續(xù)函數(shù),不滿足,這個函數(shù)在(a,b)內(nèi)也有可能有零點,因此在區(qū)間[a,b]上連續(xù)函數(shù),是函數(shù)在(a,b)內(nèi)有零點的充分不必要條件。 2、 用二分法求方程的近似解 (1)、二分法定義:對于區(qū)間[a,b]連續(xù)不斷且的函數(shù)通過不斷把區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法。 (2)、給定精確度()用二分法求函數(shù)的零點近似值步驟如下: ①確定區(qū)間[a,b],驗證給定精確度(); ②求區(qū)間(
3、a,b)的中點c; ③計算 (I)若=0,則c就是函數(shù)的零點; (II)若則令b=c,(此時零點); (III)若則令a=c,(此時零點); ④判斷是否達到精確度 ,若|a-b|,則得到零點的近似值a(或b),否則重復(fù)②--④步驟。 函數(shù)的零點與相應(yīng)方程根的關(guān)系,我們可用二分法來求方程的近似解,由于計算量較大,而且是重復(fù)相同的步驟,因此,我們可以通過設(shè)計一定的程序,借助計算器或者計算機來完成計算。 二、題型探究 [探究一]:函數(shù)的零點是函數(shù)y=f(x)與x軸的交點嗎?是否任意函數(shù)都有零點? 提示:函數(shù)的零點不是函數(shù)y=f(x)與x軸的交點,而是y=f(x)與x軸交點的橫坐標(biāo)
4、,也就是說函數(shù)的零點不是一個點,而是一個實數(shù);并非任意函數(shù)都有零點,只有f(x)=0有根的函數(shù)y=f(x)才有零點. [探究二]:若函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,則y=f(x)在區(qū)間[a,b]上的圖象是否一定是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0呢? 提示:不一定.由圖(1)(2)可知. [探究三]:有二分法求方程的近似解 例1:已知圖象連續(xù)不斷的函數(shù)在區(qū)間(a,b)(b-a=0.1)上有唯一零點 ,如果用“二分法”求個零點(精確度0.0001)的近似值,那么將區(qū)間等分的次數(shù)至少是(D) (A)7 (B)8 (C)9
5、(D)10 例2:下列圖象不能用二分法示這個函數(shù)的零點的是(3、5) 二、 方法提升 1、 根據(jù)根的存在定量理,判斷方程的根的取值范圍是在高考題中易考的問題,這類問題只需將區(qū)間的兩個端點的值 代入計算即可判斷出來。、 2、 判斷函數(shù)零點的個數(shù)問題常數(shù)形結(jié)合的方法,一般將題止聽等 式化為兩個函數(shù)圖象的交點問題。 3、 在導(dǎo)數(shù)問題中,經(jīng)常在高考題中出現(xiàn)兩個函數(shù)圖象的交點的個數(shù)問題,要確定函數(shù)具體的零點的個數(shù)需逐個判斷,在符合根的存在定量的條件下,還需輔以函數(shù)的單調(diào)性才能準(zhǔn)確判斷出零點的個數(shù)。 三、 反思感悟:
6、 。 五、課時作業(yè): 1.函數(shù)的零點個數(shù)( C ). A.
7、0個 B. 1個 C. 2個 D. 不能確定 2.若函數(shù)在內(nèi)恰有一解,則實數(shù)的取值范圍是( B ). A. B. C. D. 3.函數(shù)的零點所在區(qū)間為( C ) A. (1,0) B. (0,1) C. (1,2) D. (2,3) 4.方程lgx+x=0在下列的哪個區(qū)間內(nèi)有實數(shù)解( B ). A. [-10,-0.1] B. C. D. 5.函數(shù)的圖象是在R上連續(xù)不斷的曲線,且,則在區(qū)間上( D ).
8、 A. 沒有零點 B. 有2個零點 C. 零點個數(shù)偶數(shù)個 D. 零點個數(shù)為k, 6、設(shè)若關(guān)于的方程有三個不同的實數(shù)解,則等于( A ) A.5 B. C.13 D. 7、是定義在上的奇函數(shù),其圖象如下圖所示, 令,則下列關(guān)于的敘述正確的是( B ) A.若,則函數(shù)的圖象關(guān)于原點對 B.若,則方程=0有大于2的實根 C.若,則方程=0有兩個實根 D.若,則方程=0有三個實根 8、已知是以2為周期的偶函數(shù),當(dāng)時,,那么在區(qū)間內(nèi),關(guān)于的方程(其中走為不等于l的實數(shù))有四個不同的實根,則的取值范圍是(C ) A. B. C.
9、 D. 9、定義在R上的函數(shù)既是奇函數(shù),又是周期函數(shù),是它的一個正周期.若將方程在閉區(qū)間上的根的個數(shù)記為,則可能為( D ) A.0 B.1 C.3 D.5 10、已知是定義在上的奇函數(shù),其圖象關(guān)于對稱且,則方程 在內(nèi)解的個數(shù)的最小值是 (D ) A. B. C. D. 11、已知以為周期的函數(shù),其中?若方程恰有5個實數(shù)解,則的取值范圍為( B ) A. B. C.
10、 D. 12、方程的解所在的區(qū)間為( C ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 13、函數(shù)的零點所在的區(qū)間是( B ) A B C D 14、若方程的根在區(qū)間上,則的值為( C ) A. B.1 C.或1 D.或2 15、設(shè)函數(shù)則(D) A.在區(qū)間內(nèi)均有零點? B.在區(qū)間內(nèi)均無零點? C.在區(qū)間內(nèi)有零點,在區(qū)間內(nèi)無零點? D.在區(qū)間內(nèi)無零點,在區(qū)間內(nèi)有
11、零點? 16、設(shè)方程 的兩個根為,則 (D ) A B C D 17、已知則方程f(x)=2的實數(shù)根的個數(shù)是( D ) A.0 B.1 C.2 D.3 18、已知函數(shù)在區(qū)間上有最小值,則函數(shù)在區(qū)間上是( C) A.有兩個零點 B.有一個零點 C.無零點 D.無法確定 19、已知是的零點,且,則實數(shù)a、b、m、n的大小關(guān)系是( A ) A. B.C. D. 20、關(guān)于的方程,給出下列四個命題: ①存在實數(shù),使得方
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國早期大腸癌內(nèi)鏡診治專家講座
- Unit One教程
- 老年冠心病患者心臟康復(fù)治療的基本概念
- 血與火的征服與掠奪匯總課件
- 英文數(shù)據(jù)庫檢索(CSA)課件
- 護理學(xué)基礎(chǔ)病情觀察和搶救
- 葡萄地草銨膦示范實驗效果展示-PPT
- 公共政策案例分析-PPT
- 三角形的分類
- 自然地理環(huán)境的差異性課件--李建華
- 人教版高中政治必修一82征稅和納稅課件
- 局機關(guān)財務(wù)處財務(wù)管理年終個人工作總結(jié)述職報告課件
- 產(chǎn)業(yè)組織學(xué)導(dǎo)論課件
- MBTI人格測試INTP職業(yè)性格職業(yè)領(lǐng)域建議企業(yè)員工技能培訓(xùn)通用模板課件
- Module-9-Unit-1-Did-he-live-in-New-York(教育精品)