吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文

上傳人:艷*** 文檔編號:110214856 上傳時間:2022-06-17 格式:DOC 頁數(shù):12 大?。?.63MB
收藏 版權(quán)申訴 舉報 下載
吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文_第1頁
第1頁 / 共12頁
吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文_第2頁
第2頁 / 共12頁
吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文》由會員分享,可在線閱讀,更多相關(guān)《吉林省東北師范大學(xué)附屬中學(xué)2020屆高三數(shù)學(xué)第一輪復(fù)習(xí) 函數(shù)與方程教案 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、函數(shù)與方程 一、 知識梳理:(閱讀教材必修1第85頁—第94頁) 1、 方程的根與函數(shù)的零點 (1) 零點:對于函數(shù),我們把使0的實數(shù)x叫做函數(shù)的零點。這樣,函數(shù)的零點就是方程0的實數(shù)根,也就是函數(shù)的圖象與x軸交點的橫坐標(biāo),所以方程0有實根。 (2)、函數(shù)的零點存在性定理:如果函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有那么,在區(qū)間(a,b)內(nèi)有零點,即存在c,使得=0,這個C 也就是方程0的實數(shù)根。 (3)、零點存在唯一性定理:如果單調(diào)函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有那么,在區(qū)間(a,b)內(nèi)有零點,即存在唯一c,使得=0,這個C 也就是方程0的實

2、數(shù)根。 (4)、零點的存在定理說明: ①求在閉間內(nèi)連續(xù),滿足條件時,在開區(qū)間內(nèi)函數(shù)有零點; ②條件的函數(shù)在區(qū)間(a,b)內(nèi)的零點至少一個; ③間[a,b]上連續(xù)函數(shù),不滿足,這個函數(shù)在(a,b)內(nèi)也有可能有零點,因此在區(qū)間[a,b]上連續(xù)函數(shù),是函數(shù)在(a,b)內(nèi)有零點的充分不必要條件。 2、 用二分法求方程的近似解 (1)、二分法定義:對于區(qū)間[a,b]連續(xù)不斷且的函數(shù)通過不斷把區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法。 (2)、給定精確度()用二分法求函數(shù)的零點近似值步驟如下: ①確定區(qū)間[a,b],驗證給定精確度(); ②求區(qū)間(

3、a,b)的中點c; ③計算 (I)若=0,則c就是函數(shù)的零點; (II)若則令b=c,(此時零點); (III)若則令a=c,(此時零點); ④判斷是否達到精確度 ,若|a-b|,則得到零點的近似值a(或b),否則重復(fù)②--④步驟。 函數(shù)的零點與相應(yīng)方程根的關(guān)系,我們可用二分法來求方程的近似解,由于計算量較大,而且是重復(fù)相同的步驟,因此,我們可以通過設(shè)計一定的程序,借助計算器或者計算機來完成計算。 二、題型探究 [探究一]:函數(shù)的零點是函數(shù)y=f(x)與x軸的交點嗎?是否任意函數(shù)都有零點? 提示:函數(shù)的零點不是函數(shù)y=f(x)與x軸的交點,而是y=f(x)與x軸交點的橫坐標(biāo)

4、,也就是說函數(shù)的零點不是一個點,而是一個實數(shù);并非任意函數(shù)都有零點,只有f(x)=0有根的函數(shù)y=f(x)才有零點. [探究二]:若函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,則y=f(x)在區(qū)間[a,b]上的圖象是否一定是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0呢? 提示:不一定.由圖(1)(2)可知. [探究三]:有二分法求方程的近似解 例1:已知圖象連續(xù)不斷的函數(shù)在區(qū)間(a,b)(b-a=0.1)上有唯一零點 ,如果用“二分法”求個零點(精確度0.0001)的近似值,那么將區(qū)間等分的次數(shù)至少是(D) (A)7 (B)8 (C)9

5、(D)10 例2:下列圖象不能用二分法示這個函數(shù)的零點的是(3、5) 二、 方法提升 1、 根據(jù)根的存在定量理,判斷方程的根的取值范圍是在高考題中易考的問題,這類問題只需將區(qū)間的兩個端點的值 代入計算即可判斷出來。、 2、 判斷函數(shù)零點的個數(shù)問題常數(shù)形結(jié)合的方法,一般將題止聽等 式化為兩個函數(shù)圖象的交點問題。 3、 在導(dǎo)數(shù)問題中,經(jīng)常在高考題中出現(xiàn)兩個函數(shù)圖象的交點的個數(shù)問題,要確定函數(shù)具體的零點的個數(shù)需逐個判斷,在符合根的存在定量的條件下,還需輔以函數(shù)的單調(diào)性才能準(zhǔn)確判斷出零點的個數(shù)。 三、 反思感悟:

6、 。 五、課時作業(yè): 1.函數(shù)的零點個數(shù)( C ). A.

7、0個 B. 1個 C. 2個 D. 不能確定 2.若函數(shù)在內(nèi)恰有一解,則實數(shù)的取值范圍是( B ). A. B. C. D. 3.函數(shù)的零點所在區(qū)間為( C ) A. (1,0) B. (0,1) C. (1,2) D. (2,3) 4.方程lgx+x=0在下列的哪個區(qū)間內(nèi)有實數(shù)解( B ). A. [-10,-0.1] B. C. D. 5.函數(shù)的圖象是在R上連續(xù)不斷的曲線,且,則在區(qū)間上( D ).

8、 A. 沒有零點 B. 有2個零點 C. 零點個數(shù)偶數(shù)個 D. 零點個數(shù)為k, 6、設(shè)若關(guān)于的方程有三個不同的實數(shù)解,則等于( A ) A.5 B. C.13 D. 7、是定義在上的奇函數(shù),其圖象如下圖所示, 令,則下列關(guān)于的敘述正確的是( B ) A.若,則函數(shù)的圖象關(guān)于原點對 B.若,則方程=0有大于2的實根 C.若,則方程=0有兩個實根 D.若,則方程=0有三個實根 8、已知是以2為周期的偶函數(shù),當(dāng)時,,那么在區(qū)間內(nèi),關(guān)于的方程(其中走為不等于l的實數(shù))有四個不同的實根,則的取值范圍是(C ) A. B. C.

9、 D. 9、定義在R上的函數(shù)既是奇函數(shù),又是周期函數(shù),是它的一個正周期.若將方程在閉區(qū)間上的根的個數(shù)記為,則可能為( D ) A.0 B.1 C.3 D.5 10、已知是定義在上的奇函數(shù),其圖象關(guān)于對稱且,則方程 在內(nèi)解的個數(shù)的最小值是 (D ) A. B. C. D. 11、已知以為周期的函數(shù),其中?若方程恰有5個實數(shù)解,則的取值范圍為( B ) A. B. C.

10、 D. 12、方程的解所在的區(qū)間為( C ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 13、函數(shù)的零點所在的區(qū)間是( B ) A B C D 14、若方程的根在區(qū)間上,則的值為( C ) A. B.1 C.或1 D.或2 15、設(shè)函數(shù)則(D) A.在區(qū)間內(nèi)均有零點? B.在區(qū)間內(nèi)均無零點? C.在區(qū)間內(nèi)有零點,在區(qū)間內(nèi)無零點? D.在區(qū)間內(nèi)無零點,在區(qū)間內(nèi)有

11、零點? 16、設(shè)方程 的兩個根為,則 (D ) A B C D 17、已知則方程f(x)=2的實數(shù)根的個數(shù)是( D ) A.0 B.1 C.2 D.3 18、已知函數(shù)在區(qū)間上有最小值,則函數(shù)在區(qū)間上是( C) A.有兩個零點 B.有一個零點 C.無零點 D.無法確定 19、已知是的零點,且,則實數(shù)a、b、m、n的大小關(guān)系是( A ) A. B.C. D. 20、關(guān)于的方程,給出下列四個命題: ①存在實數(shù),使得方

12、程恰有2個不同的實根;②存在實數(shù),使得方程恰有4個不同的實根; ③存在實數(shù),使得方程恰有5個不同的實根;④存在實數(shù),使得方程恰有8個不同的實根; 其中假命題的個數(shù)是( A ) A.0 B.1 C.2 D.3 21、條件:;條件:函數(shù)在區(qū)間上存在,使得成立,則是的 (A ) A.充分非必要條件B.必要非充分條件 C.充分必要條件 D.既非充分也非必要條件 22、ax2+2x+1=0至少有一個負實根的充要條件是( C ) A.0

13、1或a<0 23、已知函數(shù)在(1,2)有一個零點則實數(shù)的值范圍是 (A ) A. B. C. 或 D. 二、填空題 24.函數(shù)的零點是 2或3 . 25、若函數(shù)f(x)=a-x-a(a>0且a1)有兩個零點,則實數(shù)a的取值范圍是_a>1___. 26、若函數(shù)f(x)=ex-2x-a在R上有兩個零點,則實數(shù)a的取值范圍是_a>2-2ln2_ 27.函數(shù)零點的個數(shù)為 3 . 28、定義域和值域均為(常數(shù))的函數(shù) 和的圖像如圖所示,給出下列四個命題: (1)方程有且僅有三個解; (2)方程有且僅有三個解

14、; (3)方程有且僅有九個解; (4)方程有且僅有一個解。 那么,其中正確命題的個數(shù)是__(1)(4)___ 。 三、解答題 29.已知二次方程的兩個根分別屬于(-1,0)和(0,2),求的取值范圍. 解:設(shè)=,則=0的兩個根分別屬于(-1,0)和(1,2). 所以,即, ∴ . 30.已知: (1)為何值時,函數(shù)的圖象與軸有兩個零點; 解:(1),解得且. (2)如果函數(shù)兩個零點在原點左右兩側(cè),求實數(shù)的取值范圍. 或. 解得. 31、設(shè)關(guān)于的函數(shù)R), (1)若函數(shù)有零點,求實數(shù)b的取值范圍; (2)當(dāng)函數(shù)有零點時,討論零點的個數(shù)

15、,并求出函數(shù)的零點. 解:(1)原函數(shù)零點的問題等價于方程 化簡方程為, 的解為; 綜合①、②,得1)當(dāng)時原方程有兩解:; 2)當(dāng)時,原方程有唯一解;3)當(dāng)時,原方程無解。 32、已知a是實數(shù),函數(shù),如果函數(shù)在區(qū)間[-1,1]上有零點,求實數(shù)a的取值范圍。 解析1:函數(shù)在區(qū)間[-1,1]上有零點,即方程=0在[-1,1]上有解, a=0時,不符合題意,所以a≠0,方程f(x)=0在[-1,1]上有解<=>或或或或a≥1  所以實數(shù)a的取值范圍是或a≥1  解析2:a=0時,不符合題意,所以a≠0,又 ∴=0在[-1,1]上有解,在[-1,1]上有解在[-1

16、,1]上有解,問題轉(zhuǎn)化為求函數(shù)[-1,1]上的值域;設(shè)t=3-2x,x∈[-1,1],則,t∈[1,5],, 設(shè),時,,此函數(shù)g(t)單調(diào)遞減,時,>0,此函數(shù)g(t)單調(diào)遞增,∴y的取值范圍是,∴=0在[-1,1]上有解ó∈或。 補充練習(xí): 1、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x—1),且x∈[—1,1]時,f(x)=x2,則y=f(x)與y=log5x的圖象的交點個數(shù)為 2、是定義在R上的以3為周期的奇函數(shù),且,則方程在區(qū)間 內(nèi)解的個數(shù)的最小值是( ) A.2 B.3 C.4

17、D.5 3、函數(shù)在內(nèi)恰有一個零點,則實數(shù)的取值范圍是( ) 4、函數(shù)的零點一定位于下列哪個區(qū)間( ). A. B. C. D. 5、在區(qū)間[3,5]上有零點的函數(shù)是 ( ) A. B. C. D. 6、函數(shù)在區(qū)間[0,]上的零點個數(shù)為( ) A.1個  B.2個 C.3個 D.4個 7、設(shè)函數(shù),有 ( ) A.在定義域內(nèi)無零點;

18、 B.存在兩個零點,且分別在、內(nèi); C.存在兩個零點,且分別在、內(nèi);D.存在兩個零點,都在內(nèi)。 8、已知是使表達式成立的最小整數(shù),則方程實數(shù)根的個數(shù)為( ) (A)0 (B)1 (C)2 (D)3 9、已知函數(shù)(為自然對數(shù)的底),下列判斷中正確的是( ) A.函數(shù)無零點; B.函數(shù)有且只有一個零點,且該零點在區(qū)間內(nèi); C.函數(shù)有兩個零點,其中一個為正數(shù),另一個為負數(shù); D.函數(shù)有且只有一個零點,且該零點在區(qū)間內(nèi)。 10、若函數(shù)的零點與的零點之差的絕對值不超過0.25, 則可以是( ) A. B. C. D.

19、11、已知函數(shù),若實數(shù)是方程的解,且,則的值為( ) A.恒為正值 B.等于 C.恒為負值 D.不大于 12、定義域為R的函數(shù),若關(guān)于的方程恰有5個不同的實數(shù)解,則( ) A. B. C. D. 13、方程恰有兩個不相等實根的充要條件是 14、已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且在處取得極小值.設(shè). (1)若曲線上的點到點的距離的最小值為,求的值; (2)如何取值時,函數(shù)存在零點,并求出零點. 15、設(shè)函數(shù) (Ⅰ)當(dāng)曲線

20、處的切線斜率 (Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值; (Ⅲ)已知函數(shù)有三個互不相同的零點0,,且。若對任意的,恒成立,求m的取值范圍。 補充練習(xí)答案解析:1、4 ;2、D; 3、D; 4、B;5、A ; 6、B;7、D ;8、C;9、B ;10、A;11、A;12、B; 13、;14、解:(1)依題可設(shè) (),則; 又的圖像與直線平行 即 , , 設(shè),則 當(dāng)且僅當(dāng)時,取得最小值,即取得最小值 當(dāng)時, 解得 當(dāng)時, 解得 (2)由(),得 當(dāng)時,方程有一解,函數(shù)有一零點; 當(dāng)時,方程有二解, 若,,函數(shù)有兩個零點,即;若,,函

21、數(shù)有兩個零點,即; 當(dāng)時,方程有一解, , 函數(shù)有一零點 綜上,當(dāng)時, 函數(shù)有一零點; 當(dāng)(),或()時, 函數(shù)有兩個零點; 當(dāng)時,函數(shù)有一零點. 15、【解析】解:當(dāng) 所以曲線處的切線斜率為1. (2)解:,令,得到 因為 當(dāng)x變化時,的變化情況如下表: + 0 - 0 + 極小值 極大值 在和內(nèi)減函數(shù),在內(nèi)增函數(shù)。 函數(shù)在處取得極大值,且= 函數(shù)在處取得極小值,且= (3)解:由題設(shè), 所以方程=0由兩個相異的實根,故,且,解得,因為 若,而,不合題意 若則對任意的有則又,所以函數(shù)在的最小值為0,于是對任意的,恒成立的充要條件是,解得 。,綜上,m的取值范圍是

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!