《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題6 數(shù)列 第41練 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題6 數(shù)列 第41練 Word版含解析(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5訓(xùn)練目標(biāo)(1)數(shù)列知識(shí)的綜合應(yīng)用;(2)中檔大題的規(guī)范練訓(xùn)練題型(1)等差、等比數(shù)列的綜合;(2)數(shù)列與不等式的綜合;(3)數(shù)列與函數(shù)的綜合;(4)一般數(shù)列的通項(xiàng)與求和解題策略(1)將一般數(shù)列轉(zhuǎn)化為等差或等比數(shù)列;(2)用方程(組)思想解決等差、等比數(shù)列的綜合問(wèn)題.1設(shè)數(shù)列an的前n項(xiàng)和為Sn.已知2Sn3n3.(1)求an的通項(xiàng)公式;(2)若數(shù)列bn滿足anbnlog3an,求bn的前n項(xiàng)和Tn.2(20xx安徽)已知數(shù)列an是遞增的等比數(shù)列,且a1a49,a2a38.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)Sn為數(shù)列an的前n項(xiàng)和,bn,求數(shù)列bn的前n項(xiàng)和T
2、n.3已知數(shù)列an的各項(xiàng)均為正數(shù),Sn是數(shù)列an的前n項(xiàng)和,且4Sna2an3.(1)求數(shù)列an的通項(xiàng)公式;(2)已知bn2n,求Tna1b1a2b2anbn的值4(20xx蘇州、無(wú)錫、常州、鎮(zhèn)江三模)已知常數(shù)0,若各項(xiàng)均為正數(shù)的數(shù)列an的前n項(xiàng)和為Sn,且a11,Sn1Sn(3n1)an1(nN*)(1)若0,求數(shù)列an的通項(xiàng)公式;(2)若an1an對(duì)一切nN*恒成立,求實(shí)數(shù)的取值范圍5已知函數(shù)f(x)滿足f(xy)f(x)f(y)且f(1).(1)當(dāng)nN*時(shí),求f(n)的表達(dá)式;(2)設(shè)annf(n),nN*,求證:a1a2a3an2;(3)設(shè)bn(9n),nN*,Sn為bn的前n項(xiàng)和,當(dāng)
3、Sn最大時(shí),求n的值答案精析1解(1)因?yàn)?Sn3n3,所以2a133,故a13,當(dāng)n1時(shí),2Sn13n13,此時(shí)2an2Sn2Sn13n3n123n1,即an3n1,顯然當(dāng)n1時(shí),a1不滿足an3n1,所以an(2)因?yàn)閍nbnlog3an,所以b1,當(dāng)n1時(shí),bn31nlog33n1(n1)31n,所以T1b1.當(dāng)n1時(shí),Tnb1b2b3bn131232333(n1)31n,所以3Tn1130231332(n1)32n,兩式相減,得2Tn(3031323332n)(n1)31n(n1)31n,所以Tn.經(jīng)檢驗(yàn),n1時(shí)也適合綜上可得Tn.2解(1)由題設(shè)知a1a4a2a38.又a1a49,可
4、解得或(舍去)由a4a1q3得公比q2,故ana1qn12n1(nN*)(2)Sn2n1,又bn,所以Tnb1b2bn1.3解(1)當(dāng)n1時(shí),a1S1aa1.解得a13.又4Sna2an3,當(dāng)n2時(shí),4Sn1a2an13.,得4anaa2(anan1),即aa2(anan1)0.(anan1)(anan12)0.anan10,anan12(n2),數(shù)列an是以3為首項(xiàng),2為公差的等差數(shù)列an32(n1)2n1.(2)Tn321522(2n1)2n,2Tn322523(2n1)2n(2n1)2n1,得Tn3212(22232n)(2n1)2n16822n1(2n1)2n1(2n1)2n12.4解
5、(1)當(dāng)0時(shí),Sn1Snan1,所以SnSn.因?yàn)閍n0,所以Sn0,所以an1an.因?yàn)閍11,所以an1.(2)因?yàn)镾n1Sn(3n1)an1,an0,所以3n1,則31,321,3n11(n2,nN*)累加,得1(3323n1)n1,則Sn(n)an(n2,nN*)經(jīng)檢驗(yàn),上式對(duì)n1也成立,所以Sn(n)an(nN*),Sn1(n1)an1(nN*),得an1(n1)an1(n)an,即(n)an1(n)an.因?yàn)?,所以n0,n0.因?yàn)閍n1an對(duì)一切nN*恒成立,所以n(n)對(duì)一切nN*恒成立,即對(duì)一切nN*恒成立記bn,則bnbn1.當(dāng)n1時(shí),bnbn10;當(dāng)n2時(shí),bnbn10.所以b1b2是一切bn中最大的項(xiàng)綜上,的取值范圍是(,)5(1)解令xn,y1,得f(n1)f(n)f(1)f(n),f(n)是首項(xiàng)為,公比為的等比數(shù)列,f(n)()n.(2)證明設(shè)Tn為an的前n項(xiàng)和,annf(n)n()n,Tn2()23()3n()n,Tn()22()33()4(n1)()nn()n1,兩式相減得Tn()2()3()nn()n1,1()nn()n1,Tn2()n1n()n2.(3)解f(n)()n,bn(9n)(9n).當(dāng)n8時(shí),bn0;當(dāng)n9時(shí),bn0;當(dāng)n9時(shí),bn0.當(dāng)n8或n9時(shí),Sn取得最大值