《高中數(shù)學(xué)人教A版必修四 第一章 三角函數(shù) 1.1.1 課時(shí)作業(yè)含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)人教A版必修四 第一章 三角函數(shù) 1.1.1 課時(shí)作業(yè)含答案(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
人教版高中數(shù)學(xué)必修精品教學(xué)資料
第一章 三角函數(shù)
§1.1 任意角和弧度制
1.1.1 任意角
課時(shí)目標(biāo) 1.了解任意角的概念,能正確區(qū)分正角、負(fù)角與零角.2.理解象限角與終邊相同的角的定義.掌握終邊相同的角的表示方法,并會(huì)判斷角所在的象限.
1.角
(1)角的概念:角可以看成平面內(nèi)______________繞著____________從一個(gè)位置________到另一個(gè)位置所成的圖形.
(2)角的分類:按旋轉(zhuǎn)方向可將角分為如下三類:
類型
定義
圖示
正角
按________________形成的角
負(fù)角
2、按________________形成的角
零角
一條射線________________,稱它形成了一個(gè)零角
2.象限角
角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么,角的終邊在第幾象限,就說(shuō)這個(gè)角是______________.如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限.
3.終邊相同的角
所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=________________},即任一與角α終邊相同的角,都可以表示成角α與______________的和.
一、選擇題
1.與405°角終邊相同的角是( )
A.
3、k·360°-45°,k∈Z B.k·180°-45°,k∈Z
C.k·360°+45°,k∈Z D.k·180°+45°,k∈Z
2.若α=45°+k·180° (k∈Z),則α的終邊在( )
A.第一或第三象限 B.第二或第三象限
C.第二或第四象限 D.第三或第四象限
3.設(shè)A={θ|θ為銳角},B={θ|θ為小于90°的角},C={θ|θ為第一象限的角},D
4、={θ|θ為小于90°的正角},則下列等式中成立的是( )
A.A=B B.B=C
C.A=C D.A=D
4.若α是第四象限角,則180°-α是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
5.集合M=,
P=,則M、P之間的關(guān)系為( )
A.M=P B.MP
C.MP D.M∩P=?
6.已知α為第三象限角,則所在的象限是( )
A.第一或第二象限 B.第二或第三象限
C.第一
5、或第三象限 D.第二或第四象限
二、填空題
7.若角α與β的終邊相同,則α-β的終邊落在________.
8.經(jīng)過(guò)10分鐘,分針轉(zhuǎn)了________度.
9.如圖所示,終邊落在陰影部分(含邊界)的角的集合是______________________________.
10.若α=1 690°,角θ與α終邊相同,且-360°<θ<360°,則θ=________.
三、解答題
11.在0°~360°范圍內(nèi),找出與下列各角終邊相同的角,并判定它們是第幾象限角.
(1)-150°;(
6、2)650°;(3)-950°15′.
12.如圖所示,寫(xiě)出終邊落在陰影部分的角的集合.
能力提升
13.如圖所示,寫(xiě)出終邊落在直線y=x上的角的集合(用0°到360°間的角表示).
14.設(shè)α是第二象限角,問(wèn)是第幾象限角?
1.對(duì)角的理解,初中階段是以“靜止”的眼光看,高中階段應(yīng)用“運(yùn)動(dòng)”的觀點(diǎn)下定義,理解這一概念時(shí),要注意“旋轉(zhuǎn)方向”決定角的“正負(fù)”,“旋轉(zhuǎn)幅度”決定角的“絕對(duì)值大小”.
2.關(guān)于終邊
7、相同角的認(rèn)識(shí)
一般地,所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=α+k·360°,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整數(shù)個(gè)周角的和.
注意:(1)α為任意角.
(2)k·360°與α之間是“+”號(hào),k·360°-α可理解為k·360°+(-α).
(3)相等的角,終邊一定相同;終邊相同的角不一定相等,終邊相同的角有無(wú)數(shù)多個(gè),它們相差360°的整數(shù)倍.
(4)k∈Z這一條件不能少.
第一章 三角函數(shù)
§1.1 任意角和弧度制
8、
1.1.1 任意角
答案
知識(shí)梳理
1.(1)一條射線 端點(diǎn) 旋轉(zhuǎn) (2)逆時(shí)針?lè)较蛐D(zhuǎn) 順時(shí)針?lè)较蛐D(zhuǎn) 沒(méi)有作任何旋轉(zhuǎn)
2.第幾象限角 3.α+k·360°,k∈Z 整數(shù)個(gè)周角
作業(yè)設(shè)計(jì)
1.C 2.A
3.D [銳角θ滿足0°<θ<90°;而B(niǎo)中θ<90°,可以為負(fù)角;C中θ滿足k·360°<θ<k·360°+90°,k∈Z;D中滿足0°<θ<90°,故A=D.]
4.C [特殊值法,給α賦一特殊值-60
9、76;,
則180°-α=240°,
故180°-α在第三象限.]
5.B [對(duì)集合M來(lái)說(shuō),x=(2k±1)45°,即45°的奇數(shù)倍;對(duì)集合P來(lái)說(shuō),x=(k±2)45°,即45°的倍數(shù).]
6.D [由k·360°+180°<α<k·360°+270°,k∈Z,
得·360°+90°<<·360°+135°,k∈Z.
當(dāng)k為偶數(shù)時(shí),為第二象限角;
當(dāng)
10、k為奇數(shù)時(shí),為第四象限角.]
7.x軸的正半軸
8.-60
9.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}
10.-110°或250°
解析 ∵α=1 690°=4×360°+250°,∴θ=k·360°+250°,k∈Z.∵-360°<θ<360°,
∴k=-1或0.
∴θ=-110°或250°.
11.解 (1)因?yàn)椋?50°=-360
11、6;+210°,所以在0°~360°范圍內(nèi),與-150°角終邊相同的角是210°角,它是第三象限角.
(2)因?yàn)?50°=360°+290°,所以在0°~360°范圍內(nèi),與650°角終邊相同的角是290°角,它是第四象限角.
(3)因?yàn)椋?50°15′=-3×360°+129°45′,所以在0°~360°范圍內(nèi),與-950°15′角終邊相同的角是129°45′角,它是第二象限角.
12.解
12、設(shè)終邊落在陰影部分的角為α,角α的集合由兩部分組成.
①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.
②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.
∴角α的集合應(yīng)當(dāng)是集合①與②的并集:
{α|k·360°+30°≤α<k·360°+105°,k∈Z}
∪{α|k·360°+210°≤α<k·360
13、°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}
∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}
={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}
={α|k·
14、180°+30°≤α<k·180°+105°,k∈Z}.
13.解 終邊落在y=x (x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},終邊落在
y=x (x≤0) 上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是終邊在y=x上角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180&
15、#176;,
k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.
14.解 當(dāng)α為第二象限角時(shí),
90°+k·360°<α<180°+k·360°,k∈Z,
∴30°+·360°<<60°+·360°,k∈Z.
當(dāng)k=3n時(shí),30°+n·360°<<60°+n·360°,此時(shí)為第一象限角;
當(dāng)k=3n+1時(shí),150°+n·360°<<180°+n·360°,此時(shí)為第二象限角;
當(dāng)k=3n+2時(shí),270°+n·360°<<300°+n·360°,此時(shí)為第四象限角.綜上可知是第一、二、四象限角.