《2022年高考數(shù)學(xué) 6年高考母題精解精析 專題13 統(tǒng)計(jì)01 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 6年高考母題精解精析 專題13 統(tǒng)計(jì)01 理(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué) 6年高考母題精解精析 專題13 統(tǒng)計(jì)01 理
1.【xx高考真題上海理17】設(shè),,隨機(jī)變量取值
的概率均為,隨機(jī)變量取值的概率也均為,若記分別為的方差,則( )
A. B.
C. D.與的大小關(guān)系與的取值有關(guān)
2.【xx高考真題陜西理6】從甲乙兩個(gè)城市分別隨機(jī)抽取16臺(tái)自動(dòng)售貨機(jī),對其銷售額進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為,,中位數(shù)分別為,,則( )
A. ,
B. ,
C. ,
D. ,
3.【xx高考真題山東理4】采用系統(tǒng)抽樣方法從960人中抽取32
2、人做問卷調(diào)查,為此將他們隨機(jī)編號(hào)為1,2,…,960,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號(hào)碼為9.抽到的32人中,編號(hào)落入?yún)^(qū)間的人做問卷,編號(hào)落入?yún)^(qū)間的人做問卷,其余的人做問卷.則抽到的人中,做問卷的人數(shù)為
(A)7 (B) 9 (C) 10 (D)15
4.【xx高考真題江西理9】樣本()的平均數(shù)為,樣本()的平均數(shù)為,若樣本(,)的平均數(shù),其中,則n,m的大小關(guān)系為
A. B. C. D.不能確定
5.【xx高考真題湖南理4】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,
3、…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點(diǎn)的中心(,)
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
【答案】D
【解析】由回歸方程為=0.85x-85.71知隨的增大而增大,所以y與x具有正的線性相關(guān)關(guān)系,由最小二乘法建立的回歸方程得過程知,所以回歸直線過樣本點(diǎn)的中心(,),利用回歸方程可以預(yù)測估計(jì)總體,所以D不正確.
6.【xx高考真題安徽理5】甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條
4、形統(tǒng)計(jì)圖如圖所示,則
甲的成績的平均數(shù)小于乙的成績的平均數(shù)
甲的成績的中位數(shù)等于乙的成績的中位數(shù)
甲的成績的方差小于乙的成績的方差
甲的成績的極差小于乙的成績的極差
7.【xx高考真題天津理9】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所. 現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取_________所學(xué)校,中學(xué)中抽取________所學(xué)校.
【答案】18,9
【解析】共有學(xué)校所,抽取30所,所以從小學(xué)抽取所,從中學(xué)抽取所。
8.【xx高考江蘇2】(5分)某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為,現(xiàn)用分層抽樣的方法從該
5、校高中三個(gè)年級的學(xué)生中抽取容量為50的樣本,則應(yīng)從高二年級抽取 ▲ 名學(xué)生.
9.【xx高考真題遼寧理19】(本小題滿分12分)
電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”。
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別
有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率。現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽
樣方法每次抽取1名觀眾,抽取3次,記被抽取的
6、3名觀眾中的“體育迷”人數(shù)為X。若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望和方差。
附:
【答案】
【xx年高考試題】
一、選擇題:
1. (xx年高考山東卷理科7) 某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬元)
4
2
3
5
銷售額y(萬元)
49
26
39
54
根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為
(A)63.6萬元 (B)65.5萬元 (C)67.7萬元 (D)72.0萬元
3. (xx年高考湖南卷理科4)通過隨即詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如
7、下的列聯(lián)表:
男
女
總計(jì)
愛好
40
20
60
不愛好
20
30
50
總計(jì)
60
50
110
由算得,.
附表:
0.050
0.010
0.001
3.841
6.635
10.828
參照附表,得到的正確結(jié)論是
A.在犯錯(cuò)的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C. 由99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 由99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
5.(xx年高考陜西卷理科9)設(shè),,,
8、是變量x和y的n個(gè)樣本點(diǎn),直線是由這些樣本點(diǎn)通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是
(A)x和y相關(guān)系數(shù)為直線l的斜率
(B)x和y的相關(guān)系數(shù)在0到1之間
(C)當(dāng)n為偶數(shù)時(shí),分布在l兩側(cè)的樣本點(diǎn)的個(gè)數(shù)一定相同
(D)直線過點(diǎn)
【答案】D
【解析】:由得又,所以則直線過點(diǎn),故選D
6. (xx年高考四川卷理科1)有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35
9、.5.39.5) 7 [39.5,43.5) 3 根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[31.5,43.5)的概率約是( )
(A) (B) (C) (D)
答案:B
解析:大于或等于31.5的數(shù)據(jù)所占的頻數(shù)為12+7+3=22,該數(shù)據(jù)所占的頻率約為.
二、填空題:
3. (xx年高考廣東卷理科13)某數(shù)學(xué)老師身高176cm,他爺爺、父親和兒子的身高分別是173cm、170cm、和182cm.因兒子的身高與父親的身高有關(guān),該老師用線性回歸分析的方法預(yù)測他孫子的身高為 cm.
【解析】185cm.
4.(xx年高考安徽卷江蘇6)某老師從星期一到星期五
10、收到信件數(shù)分別是10,6,8,5,6,則該組數(shù)據(jù)的方差
【答案】7
【解析】因?yàn)樾偶?shù)的平均數(shù)為,所以方差為=7.
三、解答題:
1. (xx年高考遼寧卷理科19)(本小題滿分12分)
某農(nóng)場計(jì)劃種植某種新作物,為此對這種作物的兩個(gè)品種(分別稱為品種甲和品種乙)進(jìn)行田間試驗(yàn).選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機(jī)選n小塊地種植品種甲,另外n小塊地種植品種乙.
(I)假設(shè)n=4,在第一大塊地中,種植品種甲的小塊地的數(shù)目記為X,求X的分布列和數(shù)學(xué)期望;
(II)試驗(yàn)時(shí)每大塊地分成8小塊,即n=8,試驗(yàn)結(jié)束后得到品種甲和品種乙在個(gè)小塊地上的每公頃產(chǎn)量(單位:
11、kg/hm2)如下表:
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?
附:樣本數(shù)據(jù)x1,x2,…,xa的樣本方差,其中為樣本平均數(shù).
即X的分布列為
X
0
1
2
3
4
P
X的數(shù)學(xué)期望是:
.
2. (xx年高考全國新課標(biāo)卷理科19)(本小題滿分12分)
某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測試了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
12、A配方的頻數(shù)分布表
指標(biāo)值分組
頻數(shù)
8
20
42
22
8
B配方的頻數(shù)分布表
指標(biāo)值分組
頻數(shù)
4
12
42
32
8
(Ⅰ)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(Ⅱ)已知用B配方生成的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為
從用B配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元),求X的分布列及數(shù)學(xué)期望.(以實(shí)驗(yàn)結(jié)果中質(zhì)量指標(biāo)值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標(biāo)值落入相應(yīng)組的概率)
3. (xx年高考廣東卷理科17)(本小題滿
13、分13分)
為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
(1)已知甲廠生產(chǎn)的產(chǎn)品共98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足≥175且y≥75,該產(chǎn)品為優(yōu)等品,用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨即抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望).
所以的分布列為
0
1
2
P
故
4.(xx年高考北京卷理科17)本小題共13分
以下
14、莖葉圖記錄了甲、乙兩組個(gè)四名同學(xué)的植樹棵樹。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示。
(Ⅰ)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(Ⅱ)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵樹Y的分布列和數(shù)學(xué)期望。
(注:方差,其中為,,…… 的平均數(shù))
5.(xx年高考福建卷理科19)(本小題滿分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠得產(chǎn)品都符合
15、相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:
5
6
7
8
P
0.4
a
b
0.1
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個(gè)樣本的
16、頻率分布估計(jì)總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
(III)在(I)、(II)的條件下,若以“性價(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價(jià)比”=;
(2)“性價(jià)比”大的產(chǎn)品更具可購買性.
(II)由已知得,樣本的頻率分布表如下:
3
4
5
6
7
8
0.3
0.2
0.2
0.1
0.1
0.1
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,可得等級系數(shù)X2的概率分布列如下:
3
4
5
6
7
8
P
0.3
0.2
0.2
0.1
0.1
0.1
所以