《2022高考數(shù)學二輪復習 第一部分 題型專項練 中檔題保分練(一)文》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學二輪復習 第一部分 題型專項練 中檔題保分練(一)文(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學二輪復習 第一部分 題型專項練 中檔題保分練(一)文
1.(2018·海淀區(qū)模擬)已知數(shù)列{an}的前n項和為Sn,a1=,2Sn=Sn-1+1(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)記求{}的前n項和Tn.
解析:(1)當n=2時,由2Sn=Sn-1+1及a1=,得2S2=S1+1,即2a1+2a2=a1+1,解得a2=.又由2Sn=Sn-1+1,① 可知2Sn+1=Sn+1,②
②-①得2an+1=an,即an+1=an(n≥2),且n=1時,=適合上式,
因此數(shù)列{an}是以為首項,公比為的等比數(shù)列,故an=(n∈N*).
(2)由(
2、1)及可知bn==n,
所以==-,
故Tn=++…+==1-=.
2.(2018·濱州模擬)在如圖所示的幾何體P-ABCD中,四邊形ABCD為菱形,∠ABC=120?,AB=a,PB=a,PB⊥AB,平面ABCD⊥平面PAB,AC∩BD=O,E為PD的中點,G為平面PAB內(nèi)任一點.
(1)在平面PAB內(nèi),過G點是否存在直線l使OE∥l?如果不存在,請說明理由,如果存在,請說明作法;
(2)過A,C,E三點的平面將幾何體P-ABCD截去三棱錐D-AEC,求剩余幾何體AECBP的體積.
解析:(1)過G點存在直線l使OE∥l,理由如下:
由題可知O為BD的中點,又E為PD的中點
3、,
所以在△PBD中,有OE∥PB.
若點G在直線PB上,則直線PB即為所求作直線l,
所以有OE∥l;
若點G不在直線PB上,在平面PAB內(nèi),
過點G作直線l,使l∥PB,
又OE∥PB,所以OE∥l,
即過G點存在直線l使OE∥l.
(2)連接EA,EC,則平面ACE將幾何體分成兩部分:
三棱錐D-AEC與幾何體AECBP(如圖所示).
因為平面ABCD⊥平面PAB,且交線為AB,
又PB⊥AB,所以PB⊥平面ABCD.
故PB為幾何體P-ABCD的高.
又四邊形ABCD為菱形,∠ABC=120?,AB=a,PB=a,
所以S四邊形ABCD=2×a2=a2,
4、
所以VP-ABCD =S四邊形ABCD·PB=×a2×a=a3.
又OE綊PB,所以OE⊥平面ACD,
所以V三棱錐D-AEC=V三棱錐E-ACD=S△ACD·EO
=VP-ABCD=a3,
所以幾何體AECBP的體積V=VP-ABCD-V三棱錐D-AEC=a3-a3=a3.
3.(2018·綿陽模擬)某校為緩解高三學生的高考壓力,經(jīng)常舉行一些心理素質綜合能力訓練活動,經(jīng)過一段時間的訓練后從該年級800名學生中隨機抽取100名學生進行測試,并將其成績分為A、B、C、D、E五個等級,統(tǒng)計數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調查數(shù)據(jù),回答下列問題:
(1)試估算該校高三年
5、級學生獲得成績?yōu)锽的人數(shù);
(2)若等級A、B、C、D、E分別對應100分、90分、80分、70分、60分,學校要求當學生獲得的等級成績的平均分大于90分時,高三學生的考前心理穩(wěn)定,整體過關,請問該校高三年級目前學生的考前心理穩(wěn)定情況是否整體過關?
(3)以每個學生的心理都培養(yǎng)成為健康狀態(tài)為目標,學校決定對成績等級為E的16名學生(其中男生4人,女生12人)進行特殊的一對一幫扶培訓,從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率.
解析:(1)從條形圖中可知這100人中,有56名學生成績等級為B,
故可以估計該校學生獲得成績等級為B的概率為=,
則該校高三年級學生獲得
6、成績等級為B的人數(shù)約有800×=448.
(2)這100名學生成績的平均分為×(32×100+56×90+7×80+3×70+2×60)=91.3(分),
因為91.3>90,所以該校高三年級目前學生的“考前心理穩(wěn)定整體”已過關.
(3)按分層抽樣抽取的4人中有1名男生,3名女生,記男生為a,3名女生分別為b1,b2,b3.從中抽取2人的所有情況為ab1,ab2,ab3,b1b2,b1b3,b2b3,共6種情況,其中恰好抽到1名男生的有ab1,ab2,ab3,共3種情況,故所求概率P=.
4.請在下面兩題中任選一題作答
(選修4-4:坐標系與參數(shù)方程)(2018·梧州模擬)在直角坐標
7、系xOy中,曲線C1:(t為參數(shù),a>0),在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中,曲線C2:ρ=4sin θ .
(1)試將曲線C1與C2化為直角坐標系xOy中的普通方程,并指出兩曲線有公共點時a的取值范圍;
(2)當a=3時,兩曲線相交于A,B兩點,求|AB|.
解析:(1)曲線C1:,消去參數(shù)t可得普通方程為(x-3)2+(y-2)2=a2.
曲線C2:ρ=4sin θ,兩邊同乘ρ.可得普通方程為x2+(y-2)2=4.
把(y-2)2=4-x2代入曲線C1的普通方程得:a2=(x-3)2+4-x2=13-6x,
而對C2有x2≤x2+(y-2)2=4,即-2≤
8、x≤2,所以1≤a2≤25.故當兩曲線有公共點時,a的取值范圍為[1,5].
(2)當a=3時,曲線C1:(x-3)2+(y-2)2=9,
兩曲線交點A,B所在直線方程為x=.
曲線x2+(y-2)2=4的圓心到直線x=的距離為d=,
所以|AB|=2=.
(選修4-5:不等式選講)(2018·梧州模擬) 已知函數(shù)f(x)=|2x-1|+|x+1|.
(1)在下面給出的直角坐標系中作出函數(shù)y=f(x)的圖象,并由圖象找出滿足不等式f(x)≤3的解集;
(2)若函數(shù)y=f(x)的最小值記為m,設a,b∈R,且有a2+b2=m,試證明:+≥.
解析:(1)因為f(x)=|2x-1|+|x+1|=
所以作出圖象如圖所示,并從圖可知滿足不等式f(x)≤3的解集為[-1,1].
(2)證明:由圖可知函數(shù)y=f(x)的最小值為,即m=.
所以a2+b2=,從而a2+1+b2+1=,
從而+=[(a2+1)+(b2+1)]=≥=.
當且僅當=時,等號成立,
即a2=,b2=時,有最小值,
所以+≥得證.