航空杯注塑成型工藝及模具設計
航空杯注塑成型工藝及模具設計,航空,注塑,成型,工藝,模具設計
哈 爾 濱 理 工 大 學
畢 業(yè) 設 計
題 目:航空杯注塑成形工藝及模具設計
院 、 系:
姓 名:
指導教師:
系 主 任:
年 月 日
哈爾濱理工大學學士學位論文
航空杯注塑成形工藝及模具設計
摘 要
本設計是航空杯塑料零件的注塑模具設計,在結合了傳統(tǒng)的機械設計后把CAD/CAM技術應用在注塑模具的設計上,在CAD系統(tǒng)實行了模型和注塑模具的設計。本文介紹了我國當前模具技術的發(fā)展狀況以及CAD/CAM在模具上的應用,其中包括AUTOCAD。主要的機械部分設計,其內容包括塑料注塑模具的工作原理及應用,設計準則。塑料注塑模的設計計算,包括模具結構設計,注塑機的選用,澆注系統(tǒng)的設計,動、定模,澆注系統(tǒng),脫模機構,頂出機構,冷卻系統(tǒng)等設計等方面。如此設計出的結構可確保模具工作運行可靠。
關鍵詞 :CAD;CAM;注塑模;工藝
- V -
哈爾濱理工大學學士學位論文
Forming process and die design of airline cup injection
Abstract
It is to design the holder injection mould, references to the traditional mechanical design, focus on the CAD/CAM application in the plastic mould design, that is to say to apply the CAD system in model and plastic injection mould design. This artic introduces the mould technology and the CAD/CAM application of mould in china nowadays. Including AUTOCAD,MASTERCAM. While main mechanical designs content the principle and application of the plastic mould, design standards. The calculation of the plastic mould design concerns about the mould construction design, choosing Injection Molding Machine, injection system ,the move mould, immobility mould, the irrigating system, the doffing mould organ, the goring organ, the cooling system’s design and so on.
The structure designed in such way can ensure the reliable running of the mould.
Key words: CAD;CAM;PLASTIC INJECTION;MOULD
哈爾濱理工大學學士學位論文
目 錄
摘 要 II
Abstract III
目 錄 IV
第1章 緒 論 1
1.1 模具的作用與地位 1
1.2 本次設計研究目的及意義 1
1.3 CAD發(fā)展概況 1
1.4 注塑模CAD內容 2
第2章 塑件的工藝分析 4
2.1 塑件的工藝性分析 4
2.1.1 塑件的原材料分析 4
2.1.2 PS的性能分析 5
2.1.3 PS的注射成型過程及工藝參數(shù) 5
2.2 塑件的結構和尺寸精度及表面質量分析 6
2.2.1 結構分析 6
2.2.2 尺寸精度分析 6
2.2.3 表面質量分析 6
2.3 計算塑件的體積和質量 6
第3章 注射機的選擇及校核 7
3.1 注射機的選擇 7
3.2 型腔數(shù)目的確定及校核 8
3.3 鎖模力的校核 9
3.4 開模行程的校核 9
第4章 澆注系統(tǒng)的設計 11
4.1 分型面的選擇 11
4.2 主流道的設計 12
4.3 分流道設計 12
4.4 澆口設計 13
4.4.1 剪切速率的校核 14
4.4.2 主流道剪切速率校核 14
4.4.3 澆口剪切速率的校核 15
第5章 成型零部件設計 16
5.1 成型零件校核 16
5.2 型腔零件剛度和強度校核 17
5.3 型腔側壁厚度計算 17
第6章 合模導向機構設計 19
第7章 頂出系統(tǒng)機構設計 21
7.1 推桿推出機構 21
7.2 推件板推出機構 22
7.3 推出機構的導向與復位機構設計 22
第8章 溫度調節(jié)系統(tǒng)設計 25
8.1 對溫度調節(jié)系統(tǒng)的要求 25
8.2 冷卻系統(tǒng)設計 25
8.2.1 設計原則 25
8.2.2 冷卻時間的確定 26
8.2.3 塑料熔體釋放的熱量 26
8.2.4 高溫噴嘴向模具的接觸傳熱 26
8.2.5 注射模通過自然冷卻傳導走的熱量 27
8.2.6 冷卻系統(tǒng)的計算 28
8.2.7 凹模冷卻系統(tǒng)的計算 28
第9章 模具工作原理說明 31
總 結 32
致 謝 33
參考文獻 34
哈爾濱理工大學學士學位論文
第1章 緒 論
1.1 模具的作用與地位
模具是指工業(yè)生產上通過注塑、壓鑄或鍛壓等方式生產產品所用的各種模型和工具,是工業(yè)生產中極其重要而又不可或缺的特殊基礎工藝裝備,被稱為“工業(yè)之母”。其生產過程集精密制造、計算機技術和智能控制為一體,既是高新技術載體,又是高新技術產品。由于使用模具批量生產制件具有的高生產效率、高一致性、低耗能耗材,以及有較高的精度和復雜程度,因此已越來越被國民經濟各工業(yè)生產部門所重視,被廣泛應用于機械、電子、汽車、信息、航空、航天、輕工、軍工、交通、建材、醫(yī)療器械、五金工具、生物、能源、日用品等制造領域,據(jù)資料統(tǒng)計,利用模具制造的零件數(shù)量,在飛機、汽車、摩托車、拖拉機、電機、電器、儀器儀表等機電產品中占80%以上;在電腦、電視機、攝像機、照相機、錄像機、傳真機、電話及手機等電子產品中占85%以上;在電冰箱、空調、洗衣機、微波爐、吸塵器、電風扇、自行車等輕工業(yè)產品中占90%以上;在槍支等兵器軍工產品中占95%以上。為我國經濟發(fā)展、國防現(xiàn)代化和高端技術服務做了重要貢獻。模具工業(yè)是重要的基礎工業(yè)。工業(yè)要發(fā)展,模具須先行。沒有高水平的模具就沒有高水平的工業(yè)產品?,F(xiàn)在,模具工業(yè)水平已經成為衡量一個國家制造業(yè)水平高低的重要標志,在國民經濟中占有重要的地位,模具技術也已成為衡量一個國家產品制造水平的重要標志之一。
1.2 本次設計研究目的及意義
(1).調查研究中外文獻檢索和閱讀能力;
(2).綜合運用專業(yè)理論和知識分析、解決實際問題的能力;
(3).設計、計算與繪圖的能力,包括使用計算機的能力;
(4).掌握模具設計方法和步驟,了解模具的加工工藝過程;
(5).邏輯思維與形象思維相結合的文字及口頭表達能力;
(6).撰寫設計說明書(論文)的能力;
(7).養(yǎng)成嚴肅、認真、細致地從事技術工作的優(yōu)良作風。
1.3 CAD發(fā)展概況
計算機輔助設計(CAD-ComputerAidedDesign)指利用計算機及其圖形設備幫助設計人員進行設計工作。CAD的應用,使得設計人員在設計過程中,能充分發(fā)揮計算機的強大算術邏輯運算功能、大容量信息存儲與快速信息查找的能力,完成信息管理、數(shù)值計算、分析模擬、優(yōu)化設計和繪圖等項任務,并通過設計人員進行創(chuàng)造性的設計以實現(xiàn)最優(yōu)方案。
CAD(ComputerAidedDesign)誕生于20世紀60年代,是美國麻省理工大學提出了交互式圖形學的研究計劃,由于當時硬件設施的昂貴,只有美國通用汽車公司和美國波音航空公司使用自行開發(fā)的交互式繪圖系統(tǒng)。70年代,小型計算機費用下降,美國工業(yè)界才開始廣泛使用交互式繪圖系統(tǒng)。80年代,由于PP機的應用,CAD得以迅速發(fā)展,出現(xiàn)了專門從事CAD系統(tǒng)開發(fā)的公司。CAD最早的應用是在汽車制造、航空航天以及電子工業(yè)的大公司中。隨著計算機變得更便宜,應用范圍也逐漸變廣。通用的CAD件是AutoCAD,但AutoCAD是一種通用的繪圖軟件,對機械行業(yè)針對性差,不過幸運的是,AutoCAD是個開放性軟件,可以對它進行二次開發(fā),如采用ADS,ARX語言等。由于二次開發(fā)的深入,加強了參數(shù)化設計、智能化設計等,這樣充分發(fā)揮了計算機的強大的搜索功能和運算功能。
CAD技術的發(fā)展與應用對于徹底改變塑料模具設計與制造的傳統(tǒng)方法與落后面貌,提高模具的設計質量與設計效率,縮短模具的設計制造周期,具有重要作用。世界上第一套塑料模具CAD軟件是澳大利亞MOLDFLOW公司于1976年推出并以公司名字命名的MOLDFLOW。目前MOLDFLOW已經發(fā)展得比較完善,能夠為設計人員、模具制作人員、工程師提供指導,通過仿真設置和結果闡明來展示壁厚、澆口位置、材料、幾何形狀變化如何影響可制造性。實現(xiàn)了對注塑過程的模擬、設計原理的應用和精確計算,并逐步優(yōu)化模擬過程,使設計工程師在產品設計階段可以在計算機上“制造”塑料產品。據(jù)美國Protetype&PlasticMold公司統(tǒng)計,該公司使用CAD系統(tǒng)后一年內生產效率提高了一倍,節(jié)省了35%的準備時間,制造周期平均縮短了30%,材料節(jié)省了10%,模具成本降低了10%~30%。模具CAD/CAM/CAE技術是模具設計制造的發(fā)展方向。隨著微機軟件的發(fā)展和進步,普及CAD/CAM/CAE技術的條件已基本成熟,各企業(yè)將加大CAD/CAM技術培訓和技術服務的力度;進一步擴大CAE技術的應用范圍。計算機和網(wǎng)絡的發(fā)展正使CAD/CAM/CAE技術跨地區(qū)、跨企業(yè)、跨院所地在整個行業(yè)中推廣成為可能,實現(xiàn)技術資源的重新整合,使虛擬制造成為可能。塑料模具CAD的應用帶來了巨大的社會效益和經濟效益。
1.4 注塑模CAD內容
在模具設計中,模架及某些零件,如導柱、導套、推桿、支撐塊、澆口套、定位圈等分別已形成廠標、行標或國標。對于這些標準的或本單位采用的模架及零件可在通用的二維工程圖CAD系統(tǒng)中建立模架、零件庫,以被設計時調用。對于澆注系統(tǒng)、溫控系統(tǒng)、模架結構強度計算等內容,已有一些較成熟的計算方法或經驗計算方法,可設置這些計算公式的模塊,以便設計人員進行快速計算。注塑模CAD的內容有以下幾點:
1.注塑制品的幾何造型
2.模腔面形狀的生成
3.模具結構方面的設計
4.標準模架選擇
5.部裝圖及總裝圖的生成
6.模具零件圖的生成
7.常規(guī)計算和校核。
- 33 -
哈爾濱理工大學學士學位論文
第2章 塑件的工藝分析
該塑件是航空杯產品,其零件圖如圖所示。本塑件的材料采用PS,生產類型為大批量生產。
圖2-1 航空杯圖
2.1 塑件的工藝性分析
2.1.1 塑件的原材料分析
(1) 外形尺寸 該塑件壁厚為3mm,塑件外形尺寸一般,塑料熔體流程不太長,適合于注射成型。
(2) 精度等級 按實際公差MT5進行計算。
(3) 脫模斜度 PS屬于無定型塑料,成型收縮率較小,參考表2-10選擇該塑件上型芯和凹模的統(tǒng)一脫模斜度為1°。
2.1.2 PS的性能分析
(1) 使用性能 綜合性能好,沖擊強度、力學強度較高,尺寸穩(wěn)定,耐化學性,電氣性能良好;易于成型和機械加工,其表面可鍍鉻,適合做一般機械零件、剪摩零件、傳動零件和結構零件。
(2) 成型性能
1) 無定型料,吸濕性強,含水量應小于0.3%,必須充分干燥,要求表面光澤的塑件要求長時間預熱干燥。
2) 流動性中等,溢變料0.04mm左右
3) PS的主要性能指標
表2-1 PS的主要性能指標
塑料名稱
PS
密度
g/cm
1.02-1.08
比容
cm/g
0.86-0.98
吸水率
%
0.2-0.4
收縮率
%
0.4-0.7
熔點
C
130-160
比熱容
1470
屈服強度
MPa
50
拉伸彈性模量
MPa
1.4
抗彎強度
MPa
80
抗壓強度
MPa
53
彎曲彈性模量
MPa
1.4
2.1.3 PS的注射成型過程及工藝參數(shù)
(1) 注射成型過程
1) 成型前的準備。對PS的色澤、粒度和均勻度等進行檢驗,由于HIPS吸水性較大,成型前應進行充分的干燥。
2) 注射過程。塑件在注射機料筒內經過加熱、塑化達到流動狀態(tài)后,由模具的澆注系統(tǒng)進入模具型腔,其過程可分為充模、壓實、保壓、倒流和冷卻五個階段。
3) 塑件的后處理。處理的介質為空氣和水,處理溫度為60~75℃,處理時間為16~20s。
(2) 注射工藝參數(shù)
1)注射機:螺桿式,螺桿轉數(shù)為30r/min.
2)料筒溫度(℃):后段150~170;
中段165~180;
前段180~200.
3)噴嘴溫度(℃):170~180
4)模具溫度(℃):50~80
5)注射壓力(MPa):60~100
6)成型時間(s):30(注射時間取2.2,冷卻時間19.8,輔助時間8).
2.2 塑件的結構和尺寸精度及表面質量分析
2.2.1 結構分析
從零件圖上分析,該零件總體形狀為圓形。在凸臺上,孔對稱分布,因此,模具設計,該零件屬于中等復雜程度.
2.2.2 尺寸精度分析
從塑件的壁厚上來看,壁厚最大處為3mm,壁厚均勻,,在制件的轉角處設計圓角,防止在此處出現(xiàn)缺陷,由于制件的尺尺寸中等。
2.2.3 表面質量分析
該零件的表面除要求沒有缺陷﹑毛刺,內部不得有雜質外,沒有什么特別的表面質量要求,故比較容易實現(xiàn)。
綜上分析可以看出,注塑時在工藝控制得較好的情況下,零件的成型要求可以得到保證.
2.3 計算塑件的體積和質量
計算塑件的質量是為了選用注塑機及確定模具型腔數(shù)。
計算塑件的體積:由PRO/E軟件測得為234580.45
采用一模兩件的模具結構,考慮其外形尺寸,注塑時所需壓力和工廠現(xiàn)有設備等情況,初步選用注塑機XS—ZY—125型。
哈爾濱理工大學學士學位論文
第3章 注射機的選擇及校核
3.1 注射機的選擇
設計模具時,應詳細地了解注射機的技術規(guī)范,才能設計出合乎要求的模具,應了解的技術規(guī)范有:注射機的最大注射量、最大注射壓力、最大鎖模力、最大成型面積、模具最大厚度和最小厚度、最大開模行程以及機床模板安裝模具的螺釘孔的位置和尺寸。
公稱注塑量;指在對空注射的情況下,注射螺桿或柱塞做一次最大注射行程時,注塑成型過程所需要的時間稱為裝置所能達到的最大注射量,反映了注塑機的加工能力。
注射壓力;為了克服熔料流經噴嘴,澆道和型腔時的流動阻力,螺桿(或柱塞)對熔料必須施加足夠的壓力,我們將這種壓力稱為注射壓力。
注射速率;為了使熔料及時充滿型腔,除了必須有足夠的注射壓力外,熔料還必須有一定的流動速率,描述這一參數(shù)的為注射速率或注射時間或注射速度。常用的注射速率如表所示。
表3-1 注射速率
注射量/CM
125
250
500
1000
2000
4000
6000
10000
注射速率/CM/S
125
200
333
570
890
1330
1600
2000
注射時間/S
1
1.25
1.5
1.75
2.25
3
3.75
5
塑化能力;單位時間內所能塑化的物料量.塑化能力應與注塑機的整個成型周期配合協(xié)調,若塑化能力高而機器的空循環(huán)時間長,則不能發(fā)揮塑化裝置的能力,反之則會加長成型周期.
鎖模力;注塑機的合模機構對模具所能施加的最大夾緊力,在此力的作用下模具不應被熔融的塑料所頂開.
合模裝置的基本尺寸;包括模板尺寸,拉桿空間,模板間最大開距,動模板的行程,模具最大厚度與最小厚度等.這些參數(shù)規(guī)定了機器加工制件所使用的模具尺寸范圍.
開合模速度;為使模具閉合時平穩(wěn),以及開模,推出制件時不使塑料制件損壞,要求模板在整個行程中的速度要合理,即合模時從快到慢,開模時由慢到快在到停.
空循環(huán)時間;在沒有塑化,注射保壓,冷卻,取出制件等動作的情況下,完成一次循環(huán)所需的時間.
選擇螺桿式注塑機的型號為:XS-ZY-500,其主要技術參數(shù)如下:
表3-2 注射機參數(shù)
注塑機型號
XS-ZY-
額定注射量
500cm3
螺桿(柱塞)直徑
85mm
注射壓力
121Mpa
注射行程
260mm
注射方式
螺桿式
鎖模力
4500KN
最大成型面積
1800cm2
最大開合模行程
700mm
模具最大厚度
700mm
模具最小厚度
300mm
噴嘴圓弧半徑
R18mm
噴嘴孔直徑
Φ7.5mm
頂出形式
兩側設有頂桿,機械頂出
動、定模固定板尺寸
900X1000mm
拉桿空間
650X550mm
合模方式
中心液壓、兩側機械頂桿
液壓泵
流量
200、18L/min
壓力
614Mpa
電動機功率
40KW
加熱功率
14KW
機器外形尺寸
7670X1740X2380mm
3.2 型腔數(shù)目的確定及校核
根據(jù)市場經濟及生產效率的要求,本模具采用一模2腔型腔結構,即型腔數(shù)目。因型腔數(shù)量與注射機的塑化速率、最大注射量及鎖模量等參數(shù)有關,因此有任何一個參數(shù)都可以校核型腔的數(shù)量。一般根據(jù)注射機料筒塑化速率確定型腔數(shù)量;
(3-1)
式中——注射機最大注射量的利用系數(shù),一般取0.8;
——注射機最大注塑量,g;
——澆注系統(tǒng)所需塑料質量,;
——單個塑件的質量,。
式中、、也可以為注射機最在注射體積(cm3)、澆注系統(tǒng)凝料體積(cm3)、
單個塑件的體積(cm3)。
故取滿足我們設計要求。
3.3 鎖模力的校核
注射成型時,塑件在模具分型面上的投影面積是影響鎖模力的主要因素,其數(shù)值越大,需要的鎖模力也就越大。注射成型時,模具所需的鎖模力與塑件在水平分型面上的投影面積有關,為了可靠地鎖模,不使成型過程中出現(xiàn)溢料現(xiàn)象,應使塑料熔體對型腔的成型壓力與塑件和澆注系統(tǒng)在分型面上的投影面積之和的乘積小于注射機額定鎖模離,即:
模具的鎖模力通常應該滿足下式
(3-2)
F為鎖模力,K為系數(shù)取1.1-1.2,為模腔壓力可取35Mpa,A為塑件在分型面上的投影面積,由PRO/E軟件測得為234580.45 ,代入上式可得
F=9031.347KN≤10000KN (3-3)
符合要求
3.4 開模行程的校核
注射機開模行程是有限的,開模行程應該滿足分開模具取出塑件的需要。因此,塑料注射成型機的最大開模距離必須大于取出塑件所需的開幕距離。為了保證開模后既能取出塑件又能取出流道內的凝料,對于雙分型面注射模具,需要滿足下式:
(3-4)
式中—模具開模行程;
—推出距離(脫模距離)
—塑件高度;(H2)
—定模板與中間板之間的分開距離。
則=291mm<500mm (3-5)
小于注射機最大開合模行程,故滿足要求。
哈爾濱理工大學學士學位論文
第4章 澆注系統(tǒng)的設計
澆注系統(tǒng)是引導塑料熔體從注射機噴嘴到模具型腔的進料通道,具有傳質、傳壓和傳熱的功能,它分為普通流道澆注系統(tǒng)和熱流道澆注系統(tǒng)。該模具采用普通流道澆注系統(tǒng),包括主流到,分流道、冷料穴,澆口。
澆注系統(tǒng)的設計是注塑模具設計的一個重要環(huán)節(jié),它對注塑成型周期和塑件質量(如外觀、物理性能、尺寸精度等)都有直接影響,故設計時要使型腔布置和澆口開始部位力求對稱,防止模具承受偏載而產生溢料現(xiàn)象,而澆口的位置也要適當,盡量避免沖擊嵌件和細小的型芯,防止型芯變形,澆口的殘痕不影響塑件的外觀。概括說來,需要注意以下問題:
1.適應塑料的工藝性;
2.流程要短;
3.排氣良好;
4.避免料流直沖型芯或嵌件;
5.澆注系統(tǒng)在分型面上的投影面積應盡量??;
6.澆注系統(tǒng)的位置盡量與模具的軸線對稱;
7.修整方便,保證制品外觀質量;
8.防止塑件變形。
4.1 分型面的選擇
分型面是模具結構中的基準面,選擇模具分型面時通??紤]如下有關問題:
1根據(jù)塑件的某些技術要求,確定成型零件在動模和定模上的配置;
2塑件的生產批量;
3結合塑件的流動性確定澆注系統(tǒng)的形式和位置;
4型腔的溢流和排氣條件;
5模具加工的工藝性。
圖4-1 分型面圖
4.2 主流道的設計
主流道是指澆注系統(tǒng)中從注射機噴嘴與模具接觸處開始到分流道為止的塑料熔體的流動通道,是熔體最先流經模具的部分。在臥式注射機上主流道垂直于分型面,為使凝料能順利拔出,設計成圓錐形,主流道通常設計在主流道襯套(澆口套)中,為了方便注射,主流道始端的球面必須比注射機的噴嘴圓弧半徑大1~2mm,防止主流道口部積存凝料而影響脫模,通常將主流道小端直徑設計的比噴嘴孔直徑大0.5~1mm。其中,澆口套主流道大端直徑D應盡量選得小些。如果D過大模腔內部壓力對澆口套的反作用也將按比例增大,到達一定程度澆口套容易從模體中彈出。
4.3 分流道設計
分流道是指主流道末端與澆口之間的一段塑料熔體的流動通道。多型腔模具一定設置分流道,大型塑件由于使用多澆口進料也需設置分流道。分流道的作用是改變熔體流向,使其平穩(wěn)的流態(tài)均衡地分配到各個型腔。設計時應注意盡量減少流動過程中的熱量損失與壓力損失。
1.分流道的設計要點
分流道的設計要點是:
(1)流經分流道的熔體溫度和壓力的損失要少。為此,分流道一要短,二要使粗糙度降到最低,三是容積要小,四是少彎折。
(2)要使分流道的固化時間稍慢于制品的固化時間,以利保壓、補縮和壓力傳遞。
(3)要使熔料能迅速而又均勻地進入各型腔,故在多型腔設計時,在保證模具結構強度前提下,力求采用平衡進料,而且在保證模具結構強度前提下,力求緊湊、集中。
(4)便于加工,便于使用標準刀具,免于制造專用刀具。
2.分流道的截面形狀
分流道的截面類型有圓形、梯形、U形、半圓形等,根據(jù)塑件的材料流動性較好,長度較短,無側抽,可以采用圓形分流道且呈輻射狀布置。由于分流道中與模具接觸的外層塑料迅速冷卻,只有中心部位的塑料熔體的流動狀態(tài)較為理想,因此分流道的內表面粗糙度Ra并不要求很低,一般取1.6μm左右既可,這樣表面稍不光滑,有助于塑料熔體的外層冷卻皮層固定,從而與中心部位的熔體之間產生一定的速度差,以保證熔體流動時具有適宜的剪切速率和剪切熱。
3.分流道的布置
分流道的布置取決于型腔的布局,兩者互相影響。分流道的布置形式分平衡式和非平衡式兩種。
(1)平衡式布置
平衡式布置要求從主流道至各個型腔的分流道,其長度、形狀、斷面尺寸等都必須對應相等,達到各個型腔的熱平衡和塑料流動平衡。因此各個型腔的澆口尺寸可以相同,達到各個型腔同時均衡進料。
(2)非平衡式布置
非平衡式布置的主要特點是主流道至各個型腔的分流道長度各不相同(或加上型腔大小不同)。為了使各個型腔同時均衡進料,各個型腔的澆口尺寸必定不相同。
本塑件的分流道采用了平衡式布置。
4.4 澆口設計
澆口又稱進料口,是連接分流道與型腔之間的一段細短流道,澆口是連接分流道與型腔的通道,它是澆注系統(tǒng)最關鍵的部分,它的形狀、尺寸、位置對塑件的質量有著很大的影響。它的作用主要有以下兩個:一是作為塑料熔體的通道,二是澆口的適時凝固可控制保壓時間。
常用的澆口形式有直接澆口、側膠口、側膠口、輪輻澆口、潛伏澆口等。由于不同的澆口形式對塑料熔體的充型特性、成型質量及塑件的性能會產生不同的影響。而各種塑料因其性能的差異對于不同的澆口形式也會有不同的適應性。
在模具設計時,澆口位置及尺寸要求比較嚴格,它一般根據(jù)下述幾項原則來參考:
盡量縮短流動距離;
澆口應開設在塑件壁最厚處;
必須盡量減少或避免熔接痕;
應有利于型腔中氣體的排除;
考慮分子定向的影響;
避免產生噴射和蠕動;
不在承受彎曲或沖擊載荷的部位設置澆口;
澆口位置的選擇應注意塑件外觀質量。
圖4-2 澆口位置圖
4.4.1 剪切速率的校核
生產實踐表明,當注射模主流道和分流道的剪切速率R=5.8×10~5×10S、澆口的剪切速率R=10~10S時,所成型的塑件質量最好。對一般熱塑性塑料,將以上推薦的剪切速率值作為計算依據(jù),可用以下經驗公式表示:
R= (4-1)
式中 q——體積流量(CM/S);R——澆注系統(tǒng)斷面當量半徑(CM)。
4.4.2 主流道剪切速率校核
Q=0.8Q/T =338.2÷1.5=225.5 (CM/S) (4-2)
T注射時間:T=2.5(S);
R主流道的平均當量截面半徑:R==0.538(CM) (4-3)
d 主流道小端直徑 , d=0.63 (CM); d主流道大端直徑,d=1.2(CM) (4-4)
R== 3.1×158.9/(3.14×0.2783)=1.47×10 S (4-5)
5×10<1.47×10<5×10 (滿足條件)
4.4.3 澆口剪切速率的校核
R= =3.67×152/(3.14×0.423)=1.45×103 S (4-6)
其中:澆口面積S=/4×(D22-D12),當量面積S=R 所以R=7mm。
單從計算上看,交口剪切速率偏小。但由于模具比較特殊,為一模1腔,無分流道,壓力損失少,進料速度快,成型比較容易,,傳遞壓力好,所以澆口的剪切速率是合適的。
從以上的計算結果看,流道與澆口剪切速率的值都落在合理的范圍內,證明流道與澆口的尺寸取值是合理的。
哈爾濱理工大學學士學位論文
第5章 成型零部件設計
本成型零件工作尺寸計算時均采用平均尺寸、平均收縮率、平均制造公差和平均磨損量來進行計算。查表得PP收縮率為Q=1~2.5%,故平均收縮率為Qcp=(0.3+0.8)%/2=2%,考慮到工廠模具制造的現(xiàn)有條件,模具制造公差取z=△/3。
模具中決定塑件幾何形狀和尺寸的零件稱為成型零件,包括凹模、型芯、鑲塊、成型桿和成型環(huán)等。成型零件工作時,直接與塑料接觸,塑料熔體的高壓、料流的沖刷,脫模時與塑件間還發(fā)生摩擦。因此,成型零件要求有正確的幾何形狀,較高的尺寸精度和較低的表面粗糙度,此外,成型零件還要求結構合理,有較高的強度、剛度及較好的耐磨性能。
設計成型零件時,應根據(jù)塑料的特性和塑件的結構及使用要求,確定型腔的總體結構,選擇分型面和澆口位置,確定脫模方式、排氣部位等,然后根據(jù)成型零件的加工、熱處理、裝配等要求進行成型零件結構設計,計算成型零件的工作尺寸,對關鍵的成型零件進行強度和剛度校核。
工作尺寸是零件上直接用以成型塑件部分的尺寸,主要有型腔和型芯的徑向尺寸,型腔深度和型芯高度尺寸和中心距尺寸等。
PS的成型收縮率為0.4%--0.7%所以平均收縮率取 s=0.55%。
塑件尺寸公差按SJ1372--78標準中的5級精度成型。
5.1 成型零件校核
(a)采用臺肩固定的形式,
(b)塑件的尺寸公差源自《塑料成型工藝與模具設計》的塑件公差
數(shù)值表3.1。塑件尺寸,
(5-1)
(5-2)
式中 s——塑料的平均收縮率,PS為0.005;
——塑件外徑尺寸;
——修正系數(shù)(取0.75);
——塑件尺寸公差,見上塑料尺寸公差值;
——模具制造誤差,其他誤差忽略,當尺寸小于50mm時,;當塑件尺寸大于50mm 時,。
(a)采用臺肩固定的形式,下底面用模珂與動模壓緊。
(b)塑件的尺寸公差源自《塑料成型工藝與模具設計》的塑件公差數(shù)值表。
塑件尺寸 ,。
(5-3) (5-4)
式中各符號同前。
5.2 型腔零件剛度和強度校核
由于塑件成型部分采用模仁,再從模板上開框把模仁鑲入,用螺絲吃緊。成型部分離模仁有滿足條件的規(guī)定距離(20~25mm),而模仁離模板四周也有滿足條件的規(guī)定距離,所以成型時型腔零件完全滿足強度和剛度的要求,在這里就不一一校核。在動模板上,由于成型壓力很大部分垂直壓在其上,底部為了節(jié)約材料不打算采用支撐板。
模架如圖4.1所示:
圖5-1 模架
5.3 型腔側壁厚度計算
(1)凹模型腔側壁厚度計算
凹模型腔為組合式型腔,按強度條件計算公式
S≥R-r=r[([σ]/[σ]-2p)1/2]-1進行計算。
式中各參數(shù)分別為:
p=50Mpa(選定值);
[δ]=0.05mm;
[σ]=160MPa
r=28mm
S≥R-r=r[([σ]/[σ]-2p)1/2]-1 (5-5)
=28[(160/160-2×50)1/2]-1
≈16.8mm
一般在加工時為了加工方便,我們通常會取整數(shù),所以凹模型腔側壁厚度為17。
(2)凹模底板厚度計算
按強度條件計算,型腔地板厚為:
p=50 Mpa
r=28mm
[σ]=160MPa
h≥{1.22pr2/[σ]}1/2 (5-6)
≥{1.22×50×282/160}1/2
≥17.3mm
一般在加工時為了加工方便,我們通常會取整數(shù),所以凹模型腔側壁厚度為18mm。
哈爾濱理工大學學士學位論文
第6章 合模導向機構設計
導向機構是保證動模和定模上下模合模時,正確定位和導向的零件。合模導向機構主要有導柱導向和錐面定位,本設計采用導柱導向定位。導向機構除了有定位和導向作用外,還要承受一定的側向壓力。塑料熔體在充型過程中可能產生單面?zhèn)葔毫?,或者由于成型設備精度低的影響,使導柱承受了一定的側向壓力,從保證模具的正常工作。導柱的結構形式可采用帶頭導柱和有肩導柱,導柱導面部分長度比凸模端面高出8~12㎜,以避免出現(xiàn)導柱未導正方向而型芯先進入型腔。導柱材料采用T10,HRC50~55,導柱固定部分表面粗糙度Ra為0.8μm,導向部分Ra為0.8~0.4μm,本設計采用?根導柱,固定端與模板間采用H7/m6
導套常采用T10A,Ⅱ型導套,采用H7/m6配合鑲入模板。具體結構如下圖所示:
導柱:國家標準規(guī)定了兩種結構形式,分為帶頭導柱和有肩導柱,大型而長的導柱應開設油槽,內存潤滑劑,以減小導柱導向的摩擦。若導柱需要支撐模板的重量,特別對于大型、精密的模具,導柱的直徑需要進行強度校核。
導套:導套分為直導套和帶頭導套,直導套裝入模板后,應有防止被拔出的結構,帶頭導柱軸向固定容易。
設計導柱和導套需要注意的事項有:
(1)合理布置導柱的位置,導柱中心至模具外緣至少應有一個導柱直徑的厚度;導柱不應設在矩形模具四角的危險斷面上。通常設在長邊離中心線的1/3處最為安全。導柱布置方式常采用等徑不對稱布置,或不等直徑對稱布置。
(2)導柱工作部分長度應比型芯端面高出6~8 mm,以確保其導向與引導作用。
(3)導柱工作部分的配合精度采用H7/f7,低精度時可采取更低的配合要求;導柱固定部分配合精度采用H7/k6;導套外徑的配合精度采取H7/k6。配合長度通常取配合直徑的1.5~2倍,其余部分可以擴孔,以減小摩擦,降低加工難度。
(4)導柱可以設置在動?;蚨?,設在動模一邊可以保護型芯不受損壞,設在定模一邊有利于塑件脫模。本書模具設置四個標準帶頭導柱配合標準直導套作為導向系統(tǒng),導柱設置在動模上,以保護型芯不受損壞。導套和導柱結構如下:
導柱:國家標準規(guī)定了兩種結構形式,分為帶頭導柱和有肩導柱,大型而長的導柱應開設油槽,內存潤滑劑,以減小導柱導向的摩擦。若導柱需要支撐模板的重量,特別對于大型、精密的模具,導柱的直徑需要進行強度校核。
導套:導套分為直導套和帶頭導套,直導套裝入模板后,應有防止被拔出的結構,帶頭導柱軸向固定容易。
第7章 頂出系統(tǒng)機構設計
塑件在從模具上取下以前,還有一個從模具的成型零件上脫落的過程,使塑料件從成型零件上脫落的機構為推出機構。推出機構的動作是通過裝在注射機合模機構上的頂桿或者液壓缸來完成的。
推出機構可按其推出動作的動力來源分為手動推出機構、機動推出機構、液壓和氣壓推出機構。手動推出機構是模具開模后,由人工操縱的推出機構推出塑件,一般多用于塑件滯留在定模一側的情況;機動推出機構利用注射機的開模動作驅動模具上的推出機構,實現(xiàn)塑件的自動脫模;液壓和氣動推出機構是依靠設置在注射機上的專用液壓和氣動裝置,將塑件推出或者從模具中吹出。推動機構還可以根據(jù)推出零件的類別分類,可分為推桿推出機構、推管推出機構、凹?;虺尚屯茥U(塊)推出機構、多元綜合推出機構等。另外還可以根據(jù)模具的結構特征來分類,如:簡單推出機構、動定模雙向推出機構、順序推出機構、二級推出機構、澆注系統(tǒng)凝料的脫模機構;帶螺紋塑件的脫模機構等等。
推出機構的設計原則:
推出機構應盡量設置在動模一側。
保證塑件不因推出而變形損壞。
機構簡單動作可靠。
良好的塑件外觀。
合模時的正確復位。
7.1 推桿推出機構
由于設置推桿位置的自由度較大,因而推桿推出機構是最常見的推出機構,常被用來推出各種塑件。推桿的截面形狀根據(jù)塑件的推出情況而定,可設計成圓形、矩形等等。其中圓形最為常用,因為使用圓形推桿的地方,較容易達到推桿合模板或型芯上推桿孔的配合精度,另外圓形推桿還具有減少運動阻力、防止卡死現(xiàn)象等優(yōu)點,損壞后還便于更換。
合理地布置推桿的位置時推出機構設計中的重要工作之一,推桿的位置分布得合理,塑件就不致于變形或被頂壞。推桿位置分布應注意:
1.應設在脫模阻力大的地方;
2.推桿應均勻布置;
3.推桿應設在塑件強度剛度較大處;
4.推桿的直徑;
5.推桿的形狀及固定形式。
7.2 推件板推出機構
推件板推出機構是由一塊于凸模按一定配合精度相配合的模板,在塑件的整個周邊端面上進行推出,因此,作用面積大。推出力大而均勻,運動平穩(wěn),并且塑件上無推出痕跡。但如果型芯合推件板的配合不好,則在塑件上會出現(xiàn)毛刺,而且塑件有可能會滯留在推件板上。
結合以上這幾項設計原則和各種推出機構的特點,和經過對塑件的分析,本人在此提出了兩種塑件推出方案,這兩種方案的特點分別如下:
方案(一):
采用推桿推出,如圖3.5.1所示,利用塑件的兩個凸臺安置推桿,還有頂部可安置一根。
圖7-1 推桿推出形式
方案(二):
采用推板推出,如圖7.2所示,用推板將塑件推出。
經過對塑件的分析,因為塑件壁厚只有3㎜,如果采用推板推出的話,將會使得塑件變形,所以本人采用方案(一)推桿推出塑件。
圖7-2 推板推出形式
7.3 推出機構的導向與復位機構設計
為了保證推出機構在工作過程中靈活、平穩(wěn),每次合模后,推出元件能回到原來的位置,通常需要設計推出機構的導向與復位裝置。
(1)、導向零件
推出機構的導向零件,通常由推板導柱與推板導套組成,簡單的小模具也可由推板導柱直接與推板上的導向孔組成。導向零件使各推出元件得以保持一定的配合間隙,從而保證推出和復位動作順利進行。有的導向零件在導向的同時還起支承作用。常用的導向形式如圖3.5.3 a~c所示。圖 3.5.3 a中推板導柱固定在支承板上,圖3.5.3 b為推板導柱兩端固定形式,圖3.5.3 a、b均為推板導柱與推板導套相配合的形式,而且推板導柱除了起導向作用外,還支承著動模支承板,從而改善了支承板的受力狀況,大大提高了支承板的剛性,圖3.5.3 c為推板導柱固定在支承板上的結構,且推板導柱直接與模板上的導線孔相配合,推板導柱也不起支承作用,這種相似用于生產較小批量塑件的小型模具。當模具較大時最好采用圖3.5.3 a、b的結構。推板導柱的數(shù)量根據(jù)模具的大小而定,至少要設置兩根,大型模具需要四根。
(a) (b) (c)
圖7-3 導向形式
在分析了幾種形式的推板導向機構后,本人決定采用圖 7.3 a形式的推板導向機構,不過其具體結構有一點改變,其設計如圖7.4所示:
圖7-4 改進后推板導向形式
(2)、復位桿復位
為了使推出元件合模后能回到原來的位置,推桿固定板上同時裝有復位桿,如圖所示。常用的復位桿均采用圓形截面,一般每副模具設置四復位桿,其位置近來能夠設在固定板的四周,以便推出機構合模時復位平穩(wěn),復位桿端面與所在動模分型面平齊。
(3)、彈簧復位
彈簧復位時利用彈簧的彈力使推出機構復位。
彈簧復位與復位桿復位的主要區(qū)別是:用彈簧復位時,推出機構的復位先于合模動作完成,所以,通常為了便于活動鑲件的安放而采用彈簧先復位機構。
在本模具設計中,沒有活動鑲件,所以使用復位桿復位已經滿足設計要求,而且復位桿復位將會使得模具加工方便,所以在設計中選用復位桿復位。
哈爾濱理工大學學士學位論文
第8章 溫度調節(jié)系統(tǒng)設計
模具成型過程中,模具溫度會直接影響到塑料熔體的充模、定型、成型周期和塑件質量。模具溫度過高,成型收縮大,脫模后塑件變形大,并且還容易造成溢料和粘膜;模具溫度過低,則熔體流動性差,塑料輪廓不清晰,表面會產生明顯的銀絲或流紋等缺陷;當模具溫度不均勻時,型芯和型腔溫差過大,塑料收縮不均勻,導致塑料翹曲變形,會影響塑件的形狀和尺寸精度。綜上所述,模具上需要設置溫度調節(jié)系統(tǒng)以達到理想的溫度要求。PP推薦的成型溫度為160-220℃,模具溫度為40~80℃ 。
8.1 對溫度調節(jié)系統(tǒng)的要求
(1) 根據(jù)塑料的品種確定是對模具采用加熱方式還是冷卻方式;
(2)希望模溫均一,塑件各部同時冷卻,以提高生產率和提高塑件質量;
(3)采用低的模溫,快速,大流量通水冷卻效果一般比較好;
(4)溫度調節(jié)系統(tǒng)應盡可能做到結構簡單,加工容易,成本低廉;
(5)從成型溫度和使用要求看,需要對該模具進行冷卻,以提高生產率。
8.2 冷卻系統(tǒng)設計
8.2.1 設計原則
(1)盡量保證塑件收縮均勻,維持模具的熱平衡;
(2)冷卻水孔的數(shù)量越多,孔徑越大,則對塑件的冷卻效果越好;
(3)盡可能使冷卻水孔至型腔表面的距離相等,與制件的壁厚距離相等,經驗表明,冷卻水管中心距B大約為2.5~3.5D,冷卻水管壁距模具邊界和制件壁的距離為0.8~1.5B。最小不要小于10。
(4)澆口處加強冷卻,冷卻水從澆口處進入最佳;
(5)應降低進水和出水的溫差,進出水溫差一般不超過5℃
(6)冷卻水的開設方向以不影響操作為好,對于矩形模具,通常沿寬度方向開設水孔。
(7)合理確定冷卻水道的形式,確定冷卻水管接頭位置,避免與模具的其他機構發(fā)生干涉。
8.2.2 冷卻時間的確定
在對冷卻系統(tǒng)做計算之前,需要對某些數(shù)據(jù)取值,以便對以后的計算作出估算;取閉模時間3S,開模時間3S,頂出時間2S,冷卻時間30S,保壓時間20S,總周期為60S。
其中冷卻時間依塑料種類、塑件壁厚而異,一般用下式計算:
t=㏑[·]
=62/(3.142×0.07)㏑[8/3.142×(200-50)/(80-50)] (8-1)
= 73(S)
式中:S——塑件平均壁厚,S取6mm;
——塑料熱擴散系數(shù)(mm/s),=0.07;
T——成型溫度160-220℃,T取200℃;
T——平均脫模溫度,T取80℃;
T——模具溫度40~80℃,T取50℃。
由計算結果得冷卻時間需要73 S,這么長的冷卻時間顯然是不現(xiàn)實的。本模具型芯中的冷卻管道擴大為腔體(如下圖),使冷卻水在型芯的中空腔中流動,冷卻效果大為增強。參照經驗推薦值,冷卻時間取30S即可。
8.2.3 塑料熔體釋放的熱量
Q =nG C(t-t)
= 60×217.6×10×1.9×(220-60) (8-2)
= 3969.02KJ/h
式中:n——每小時注射次數(shù), n=60 (次);
G——每次的注射量(KG), G=217.6×10;
C——塑料的比熱容(KJ/KG·℃), C=1.9 ;
t——熔融塑料進入型腔的溫度℃,t=220;
t——塑件脫模溫度℃,t=60。
8.2.4 高溫噴嘴向模具的接觸傳熱
Q=3.6A(t-t)
=3.6×4069×10×140×(220-50) (8-3)
=348.63 KJ/h
式中:A——注塑機的噴嘴頭與模具的接觸面積(m),A=4069×10m(A=4R =4×3.14×18=4069×10m,R=18mm注塑機噴嘴球半徑,);
——金屬傳熱系數(shù) =140(W/ m℃);
t——模具平均溫度℃ t=50 ;
t——熔融塑料進入型腔的溫度℃ t=220。
8.2.5 注射模通過自然冷卻傳導走的熱量
(1)對流傳熱
Q=hA( t-t)
=5.35×0.203×(50-20) (8-4)
=112 KJ/h
式中:h——傳熱系數(shù)(KJ/ m h ℃),h=5.35(h=4.187(0.25+)= 4.187×(0.25+)= 5.35);
A——兩個分型面和四個側面的面積m2,A=0.203【A=(A)+ (A)n
= 0.097+0.22×0.48=0.203,A=2BL=2×220×220×10=0.097 m; A=4BH =4×220×250×10=0.22m);B模具寬度m m,B=220; L模具長度m m,L=220,開模率n= =(60-31.5)/60=0.48】;
t——模具平均溫度℃,t=50;
t——室溫℃,t=20。
(2)輻射散發(fā)的熱量
Q=20.8 A[()-()]
=20.8×0.22×0.8×[()-()] (8-5)
=128.7 KJ/h
式中: ——輻射率,一般表面=0.8~0.9;
A=0.22;
(3)工作臺散發(fā)的熱量
Q=hA( t-t) h (8-6)
= 502×0.0484×(50—30)
=485.94 KJ/h
式中:傳熱系數(shù)——h=502KJ/(mh℃);
A ——模具與工作臺的接觸面積m,A=0.0484;
[A=bl= 220×220×10=0.0484;b模具與工作臺接觸寬度m m,b=220;模具與工作臺接觸長度m m,l=220。]
從計算的結果看,工作臺散發(fā)的熱量比塑料熔體釋放的熱量還多,這顯然是不正確的,說明了Q的計算結果錯誤。這是因為有關Q的計算參考資料很少,計算中有很多地方不規(guī)范。簡單的計算以塑料熔體釋放出的熱量Q為總熱量,這些熱量全部由冷卻介質帶走,這些熱量應分別由凹模和型芯的冷卻系統(tǒng)帶走,實驗表明,約1/3的熱量被凹模帶走,其余由型芯帶走。模具應由冷卻系統(tǒng)帶走的熱量:
Q=(Q+ Q)-(Q+ Q+ Q) (8-7)
由于現(xiàn)在無法得到Q的正確值,所以計算以簡單計算原則,取Q= Q。
8.2.6 冷卻系統(tǒng)的計算
型腔內發(fā)出的總熱量(KJ/h):
Q= n G Q (8-8)
=60× 217.6×10×300
=3916.8
(1)每次需要的注射量(KG)——G=217.6×10
(2)確定生產周期(S)——t=60
(3)塑料單位熱流量(KJ/h)——Q=280~350; 取Q=300
(4)每小時的注射次數(shù)——n=60
從計算結果看,Q與Q相差不多但不相等,這是因為Q涉及的因素較多,所以應該應該取Q來計算。
8.2.7 凹模冷卻系統(tǒng)的計算
(1)凹模的冷卻水體積流量
q= (8-9)
= 763×103/[103×4.187×103×(25-20)×60]
= 0.61×10 m/min
式中: Q=1/3 Q=1/3×2289=763 KJ/h
——水的密度10KG/m;
C——水的比熱容4.187×10 J/KG℃;
T——水管出口溫度,T取25℃;
T——水管入口溫度,T取20℃。
(2)冷卻水管的平均流速:
V= (8-10)
=4×0.61×10/(3.14×0.0082)
=12.14 m/min =0.202 m/s
式中:d——冷卻水管直徑,取d=8 mm
查冷卻水的穩(wěn)定湍流速度與流量得,管徑為8mm的冷卻水管所對應的最低流速為1.66 m/s時才能達到湍流狀態(tài),故冷卻水在凹模冷卻管道中的流動未達到湍流。
(3)冷卻水管壁與水交界面的傳熱膜系數(shù)
= (8-11)
=7.6×(1000×0.202)0.8/0.0080.2
=1395 (w/mk)
式中:是與冷卻介質溫度有關的物理系數(shù),取7.6。
(4)凹模冷卻管的傳熱面積
A= (8-12)
=763×103/[3600×1395×(50-22.5)]
=5.52×10 m
式中:T——模具與冷卻介質平均溫度, T=27.5℃(T= T-(T+T)/2 =50-(20+25)/2 =22.5 ℃)。
(5)冷卻水孔總長L
L= (8-13)
=763×103/[3600×3.14×7.6×(1000×0.202×0.008)0.8×(50-22.5)]
=0.22m
(6)模具上應開設的冷卻水孔圈數(shù)
n=L/B =0.22÷(4×0.076) =0.72,所以冷卻水孔數(shù)位1根(如下圖)。
式中:B為開一圈冷卻水道時冷卻水道長度。
(7)冷卻水流動狀態(tài)校核
R= (8-14)
收藏