2019-2020學(xué)年高二數(shù)學(xué)下學(xué)期期末結(jié)業(yè)考試試題 文(實(shí)驗(yàn)班含解析).doc
《2019-2020學(xué)年高二數(shù)學(xué)下學(xué)期期末結(jié)業(yè)考試試題 文(實(shí)驗(yàn)班含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年高二數(shù)學(xué)下學(xué)期期末結(jié)業(yè)考試試題 文(實(shí)驗(yàn)班含解析).doc(19頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020學(xué)年高二數(shù)學(xué)下學(xué)期期末結(jié)業(yè)考試試題 文(實(shí)驗(yàn)班,含解析)本卷共12題,每題5分,共60分,在每題后面所給的四個(gè)選項(xiàng)中,只有一個(gè)是正確的。1. 設(shè)集合, ,則( )A. 1 B. 0,1,2,3 C. 1,2,3 D. 0,1,2【答案】B【解析】【分析】解出集合,進(jìn)而求出,即可得到.【詳解】 故.故選B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,屬基礎(chǔ)題.2. 已知復(fù)數(shù)(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限【答案】D【解析】根據(jù)題意得到, 對(duì)應(yīng)的點(diǎn)為,在第一象限。故答案為:D。3. 等差數(shù)列的前項(xiàng)和為,且,則的公差( )A. 1 B. 2 C. 3 D. 4【答案】A【解析】由等差數(shù)列性質(zhì)知,則.所以.故選A.4. 要想得到函數(shù)的圖象,只需將的圖像( )A. 向左平移個(gè)單位 B. 向左平移個(gè)單位C. 向右平移個(gè)單位 D. 向右平移個(gè)單位【答案】B【解析】函數(shù)的圖象向左平移個(gè)單位得到故選:B5. 若正方形的邊長(zhǎng)為1,則在正方形內(nèi)任取一點(diǎn),該點(diǎn)到點(diǎn)的距離小于1的概率為( )A. B. C. D. 【答案】A【解析】在正方形內(nèi)任取一點(diǎn),該點(diǎn)到點(diǎn)的距離小于的點(diǎn),在以點(diǎn)為圓心以為半徑的四分之一圓內(nèi),面積為 ,所以在正方形內(nèi)任取一點(diǎn),該點(diǎn)到點(diǎn)的距離小于的點(diǎn)的概率為 ,故選A.【方法點(diǎn)睛】本題題主要考查“面積型”的幾何概型,屬于中檔題. 解決幾何概型問(wèn)題常見(jiàn)類(lèi)型有:長(zhǎng)度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問(wèn)題關(guān)鍵是計(jì)算問(wèn)題題的總面積以及事件的面積;幾何概型問(wèn)題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本裏件對(duì)應(yīng)的區(qū)域測(cè)度把握不準(zhǔn)導(dǎo)致錯(cuò)誤 ;(3)利用幾何概型的概率公式時(shí) , 忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.6. 已知,則( )A. B. C. D. 【答案】A【解析】 由指數(shù)函數(shù)的圖象與性質(zhì),可知, 所以,故選A.7. 若雙曲線x2=1(b0)的一條漸近線與圓x2+(y2)2=1至多有一個(gè)交點(diǎn),則雙曲線離心率的取值范圍是()A. (1,2 B. 2,+) C. (1, D. ,+)【答案】A【解析】【分析】雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),等價(jià)于圓心到漸近線的距離大于等于半徑 解出即可【詳解】圓的圓心,半徑 雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn), ,化為 ,該雙曲線的離心率的取值范圍是 故選:A【點(diǎn)睛】本題考查雙曲線的漸近線方程、離心率的計(jì)算公式、圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,屬中檔題.8. 九章算術(shù)是我國(guó)古代的數(shù)學(xué)名著,書(shū)中提到一種名為 “芻甍”的五面體,如圖所示,四邊形是矩形,棱,和都是邊長(zhǎng)為2的等邊三角形,則這個(gè)幾何體的體積是( )A. B. C. D. 【答案】C【解析】【分析】本題可以采用分割的方法,過(guò)做一個(gè)與平面垂直的平面,這個(gè)平面把幾何體分割成三部分,包括1個(gè)三棱柱和兩個(gè)四棱錐,其中兩個(gè)四棱錐的體積相等,三者相加得到結(jié)果【詳解】過(guò)作平面,垂足為,取的中點(diǎn),連結(jié),過(guò)作,垂足為,連結(jié)和都是邊長(zhǎng)為2的等邊三角形, 采用分割的方法,過(guò)做一個(gè)與平面垂直的平面,這個(gè)平面把幾何體分割成三部分,如圖,包含1個(gè)三棱柱,兩個(gè)全等的四棱錐:,這個(gè)幾何體的體積: 故選:C【點(diǎn)睛】本題考查不規(guī)則幾何體的體積求法,本題解題的關(guān)鍵是看出幾何體可以分成三部分,逐個(gè)求出三部分的體積,考查運(yùn)算求解能力、空間想象能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題9. 函數(shù)的部分圖象大致為( )A. B. C. D. 【答案】D【解析】由函數(shù)是偶函數(shù),排除A,C,當(dāng),.排除B故選:D.點(diǎn)睛:識(shí)圖常用的方法(1)定性分析法:通過(guò)對(duì)問(wèn)題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問(wèn)題;(2)定量計(jì)算法:通過(guò)定量的計(jì)算來(lái)分析解決問(wèn)題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來(lái)分析解決問(wèn)題10. 公元263年左右,我國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法,所謂割圓術(shù),就是不斷倍增圓內(nèi)接正多邊形的邊數(shù)求出圓周率近似值的方法.如圖是利用劉徽的割圓術(shù)”思想設(shè)汁的一個(gè)程序框圖,若輸出的值為24,則判斷框中填入的條件可以為( )(參考數(shù)據(jù):)A. B. C. D. 【答案】C【解析】模擬執(zhí)行程序可得:,不滿(mǎn)足條件,不滿(mǎn)足條件,因?yàn)檩敵龅闹禐?4,則滿(mǎn)足條件,退出循環(huán),故判斷框中填入的條件為.故選C.11. 若存在(x,y)滿(mǎn)足,且使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是( )A. (,0),+) B. ,+) C. (,0) D. (0,【答案】B【解析】【分析】畫(huà)出不等式組表示的平面區(qū)域,把化為 設(shè),求出 的取值范圍;構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最小值,建立不等式求實(shí)數(shù)的取值范圍【詳解】畫(huà)出不等式組表示的平面區(qū)域,如圖所示; 可化為,設(shè),其中 ; 令 則 當(dāng)時(shí)當(dāng)時(shí), 解得 或 ;又值不可能為負(fù)值,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】本題考查了線性規(guī)劃以及函數(shù)與不等式的綜合應(yīng)用問(wèn)題,是難題12. 已知函數(shù)f(x)=aln(x+1)x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且pq,不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. 15,+) B. C. 1,+) D. 6,+)【答案】A【解析】,又p,q(0,1),且pq,不等式恒成立恒成立,即恒成立,其中整理得:恒成立,x(0,1)令,則,其對(duì)稱(chēng)軸方程為,h(x)在區(qū)間(0,1)上單調(diào)遞增,當(dāng)x1時(shí),h(x)15,a15,即實(shí)數(shù)a的取值范圍為15,+),故選:A點(diǎn)睛:導(dǎo)數(shù)問(wèn)題經(jīng)常會(huì)遇見(jiàn)恒成立的問(wèn)題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問(wèn)題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立,轉(zhuǎn)化為;(3)若恒成立,可轉(zhuǎn)化為二.填空題(每題5分,共20分)13. 已知向量,.若,則_【答案】2【解析】由題意得,又,解得答案:214. 在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓(ab0)的左焦點(diǎn),點(diǎn)P在橢圓上,直線PF與以O(shè)F為直徑的圓相交于點(diǎn)M(異于點(diǎn)F),若點(diǎn)M為PF的中點(diǎn),且直線PF的斜率為,則橢圓的離心率為_(kāi)【答案】1【解析】【分析】由為的中點(diǎn),則為的中位線,為等邊三角形,邊長(zhǎng)為代入橢圓方程: 由 即可求得橢圓的離心率【詳解】由題意可知:為的中點(diǎn),則為的中位線, 且直線PF的斜率為,則 為等邊三角形,邊長(zhǎng)為代入橢圓方程: 由,則 ,解得:,由,解得 故答案為:1.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),三角形中位線的性質(zhì),考查數(shù)形結(jié)合思想,屬于中檔題15. 長(zhǎng)方體的8個(gè)頂點(diǎn)都在球O的表面上,為的中點(diǎn),且四邊形為正方形,則球的直徑為_(kāi).【答案】4或【解析】【分析】設(shè),則 由余弦定理可得,求出,即可求出球的直徑【詳解】設(shè),則 由余弦定理可得 或, ,球的直徑為 或,球的直徑為 故答案為:4或【點(diǎn)睛】本題考查球的直徑,考查余弦定理,考查學(xué)生的計(jì)算能力,正確求出是關(guān)鍵16. 若函數(shù) ,且在實(shí)數(shù)上有三個(gè)不同的零點(diǎn),則實(shí)數(shù)_【答案】【解析】函數(shù) ,且在實(shí)數(shù)上有三個(gè)不同的零點(diǎn),等價(jià)于的圖象與的圖象恰有三個(gè)交點(diǎn),因?yàn)?所以?xún)珊瘮?shù)都是偶函數(shù),圖象都關(guān)于 軸對(duì)稱(chēng),所以必有一個(gè)交點(diǎn)在 軸上(如果交點(diǎn)都不在軸上,則交點(diǎn)個(gè)數(shù)為偶數(shù)),又因?yàn)椋从诘膱D象過(guò)原點(diǎn),所以的圖象也過(guò)原點(diǎn),所以,可得,故答案為.三.解答題(共6題,共70分)17. 已知數(shù)列的首項(xiàng)為,且 . ()證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;()設(shè),求數(shù)列的前項(xiàng)和.【答案】(1)(2)【解析】試題分析:(1)由;(2),利用錯(cuò)位相減法求和即可.試題解析:(),則數(shù)列是以3為首項(xiàng),以2為公比的等比數(shù)列,即.()由()知,.,則.點(diǎn)睛:用錯(cuò)位相減法求和應(yīng)注意的問(wèn)題(1)要善于識(shí)別題目類(lèi)型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫(xiě)出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“SnqSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.18. 如圖,正三棱柱中,為的中點(diǎn).(1)求證:;(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫(huà)出點(diǎn)的軌跡,并說(shuō)明理由.【答案】(1)見(jiàn)解析(2)見(jiàn)解析【解析】試題分析:(1)取的中點(diǎn),連接,首先證明平面得到,在正方形中,利用三角形全等可得,進(jìn)而得到平面,即可得到結(jié)論;(2)取中點(diǎn),連接,則線段為點(diǎn)的運(yùn)動(dòng)軌跡,可通過(guò)和證得平面可得結(jié)論.試題解析:(1)證明:取的中點(diǎn),連接,平面,平面,所以為正三角形,為的中點(diǎn),又平面,平面,又平面,所以正方形中,又,故,又,平面,平面,又平面,(2)取中點(diǎn),連接,則線段為點(diǎn)的運(yùn)動(dòng)軌跡理由如下設(shè)三棱錐的高為,依題意故因?yàn)榉謩e為中點(diǎn),故,又因?yàn)槠矫?,平面,所以平面,所以到平面的距離為19. 某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)0.6,0.7)頻數(shù)13249265使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)頻數(shù)151310165在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)【答案】(1)見(jiàn)解析(2)0.48(3)【解析】【分析】(1)根據(jù)使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表能作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖(2)根據(jù)頻率分布直方圖能求出該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率(3)由題意得未使用水龍頭50天的日均水量為0.48,使用節(jié)水龍頭50天的日均用水量為0.35,能此能估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水【詳解】(1)(2)根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后50天日用水量小于0.35m3的頻率為0.20.1+10.1+2.60.1+20.05=0.48,因此該家庭使用節(jié)水龍頭后日用水量小于0.35m3的概率的估計(jì)值為0.48 (3)該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為 該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為 估計(jì)使用節(jié)水龍頭后,一年可節(jié)省水【點(diǎn)睛】本題考查頻率分由直方圖的作法,考查概率的求法,考查平均數(shù)的求法及應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題20. 在直角坐標(biāo)系中,橢圓 的離心率為,點(diǎn)在橢圓上(1)求橢圓的方程;(2)若斜率存在,縱截距為的直線與橢圓相交于兩點(diǎn),若直線的斜率均存在,求證:直線的斜率依次成等差數(shù)列【答案】(1)(2)見(jiàn)解析【解析】【分析】(1)由可得,又,又在橢圓上,可得,據(jù)此即可得出(2)設(shè),代入知,設(shè),則, 則 可以用表示,將上面兩式代入即可得到,即問(wèn)題得證.【詳解】(1)由知 (2)設(shè),代入知 設(shè),則, 直線的斜率依次成等差數(shù)列?!军c(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,考查計(jì)算能力,屬于難題21. 已知函數(shù).(1)若曲線在處的切線與直線垂直,求的值;(2)討論函數(shù)的單調(diào)性;若存在極值點(diǎn),求實(shí)數(shù)的取值范圍.【答案】(1)(2)單調(diào)性見(jiàn)解析,【解析】試題分析:(1)由切線斜率就是切點(diǎn)導(dǎo)數(shù)值,易知;(2)求導(dǎo),分正負(fù)兩類(lèi)討論,得單調(diào)性,所以,解得的取值范圍為試題解析:()依題意,所以,因?yàn)榕c直線:垂直,得,解得 ()因?yàn)楫?dāng)時(shí),在上恒成立,所以的單調(diào)遞增區(qū)間為,無(wú)遞減區(qū)間;當(dāng)時(shí),由,解得;由,解得;由,解得;此時(shí)的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為 若存在極值點(diǎn),由函數(shù)的單調(diào)性知,且;由,解得所以所求實(shí)數(shù)的取值范圍為 點(diǎn)睛:本題考查導(dǎo)數(shù)的性質(zhì)應(yīng)用。本題考查分類(lèi)討論解決單調(diào)性問(wèn)題,由導(dǎo)函數(shù)得到分類(lèi)的情況,由目標(biāo)函數(shù)(二次函數(shù))的開(kāi)口方向,即導(dǎo)函數(shù)的恒正和有正負(fù)進(jìn)行分類(lèi),得到單調(diào)性之后,得到極值點(diǎn)求解即可。 22. (選修4-4.坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系 中,直線 的參數(shù)方程為 ( 為參數(shù), ).在以 為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線 : .(1)當(dāng) 時(shí),求 與 的交點(diǎn)的極坐標(biāo);(2)直線 與曲線 交于 , 兩點(diǎn),且兩點(diǎn)對(duì)應(yīng)的參數(shù) , 互為相反數(shù),求 的值.【答案】(1),(2)【解析】試題分析:(1)曲線的直角坐標(biāo)方程為,直線的普通方程為,聯(lián)立解出方程組即可;(2)把直線的參數(shù)方程代入曲線,根據(jù)結(jié)合韋達(dá)定理可得結(jié)果.試題解析:(1)由,可得,所以,即,當(dāng)時(shí),直線的參數(shù)方程(為參數(shù)),化為直角坐標(biāo)方程為,聯(lián)立解得交點(diǎn)為或,化為極坐標(biāo)為,(2)把直線的參數(shù)方程代入曲線,得,可知,所以23. (選修4-5.不等式選講)已知函數(shù),其中為實(shí)數(shù).(1)當(dāng)時(shí),解不等式;(2)當(dāng)時(shí),不等式恒成立,求的取值范圍.【答案】(1)(2)【解析】試題分析:(1),解得解集是;(2)去絕對(duì)值分類(lèi)得。試題解析:(1)時(shí),故,即不等式的解集是;(2)時(shí), ,當(dāng)時(shí),顯然滿(mǎn)足條件,此時(shí)為任意值;當(dāng)時(shí),;當(dāng)時(shí),可得或,求得;綜上,.點(diǎn)睛:本題考查絕對(duì)值不等式問(wèn)題。解絕對(duì)值不等式的基本思想是去絕對(duì)值,得到分段函數(shù),再分別解不等式即可。絕對(duì)值問(wèn)題的核心就是去絕對(duì)值。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020學(xué)年高二數(shù)學(xué)下學(xué)期期末結(jié)業(yè)考試試題 文實(shí)驗(yàn)班,含解析 2019 2020 年高 數(shù)學(xué) 下學(xué) 期期 結(jié)業(yè) 考試 試題 實(shí)驗(yàn) 解析
鏈接地址:http://m.appdesigncorp.com/p-4312182.html