支撐板零件沖壓工藝及模具設(shè)計(jì)
支撐板零件沖壓工藝及模具設(shè)計(jì),支撐,零件,沖壓,工藝,模具設(shè)計(jì)
冷沖壓工藝規(guī)程卡片南昌航大機(jī)械系產(chǎn)品名稱工件名稱支撐板產(chǎn)量第 頁產(chǎn)品圖號(hào)工件圖號(hào)共 頁材料牌號(hào)及技術(shù)規(guī)格45鋼毛料形狀及尺寸選用板料 縱裁成18009002 18001262工序號(hào)工序名稱工 序 草 圖 工裝名稱設(shè)備檢驗(yàn)要求工種備注0下料18001262剪床1沖孔落料沖孔落料復(fù)合模300kN壓力機(jī)按草圖檢驗(yàn)2 彎曲(帶預(yù)彎)彎曲模250kN壓力機(jī)按草圖檢驗(yàn)3沖孔4-10沖孔模250kN壓力機(jī)按圖檢驗(yàn)4去毛刺滾筒5檢驗(yàn)按沖壓件圖檢驗(yàn)原底圖 總號(hào)日期 更改標(biāo)記編制校對(duì)核對(duì)文件號(hào)簽名 底圖 總號(hào)簽字簽名日期日期南昌航空大學(xué)學(xué)士學(xué)位論文1目 錄1 引言 12 支撐板復(fù)合模設(shè)計(jì)22.1 支撐板沖裁工藝性分析 22.2 工件排樣與搭邊 32.3 沖裁間隙 52.4 沖壓力計(jì)算 62.5 模具壓力中心計(jì)算 82.6 凸、凹模刃口尺寸計(jì)算 92.7 復(fù)合模凹、凸凹模結(jié)構(gòu)設(shè)計(jì) 152.8 復(fù)合??傮w設(shè)計(jì)與標(biāo)準(zhǔn)零件選用 172.9 模具閉合高度與壓力機(jī)的關(guān)系 232.10模架主要零部件 242.11 壓力機(jī)選擇 273 支撐板彎曲模設(shè)計(jì)293.1 支撐板彎曲工藝性分析293.2 支撐板沖裁工藝力計(jì)算 293.3 彎曲回彈量計(jì)算 303.4 支撐板彎曲模結(jié)構(gòu)設(shè)計(jì) 323.5 彎曲??傮w設(shè)計(jì)與標(biāo)準(zhǔn)零件選用 343.6 壓力機(jī)選擇 354 結(jié) 論 36參考文獻(xiàn) 37致 謝 37支撐板零件沖壓工藝及模具設(shè)計(jì)摘要:模具是工業(yè)生產(chǎn)中使用廣泛的基礎(chǔ)工藝裝備。模具生產(chǎn)制件所表現(xiàn)出來的高精度、高復(fù)雜性、高一致性、高生產(chǎn)率和低消耗是其他加工制造方法所不能比擬的。模具技術(shù)水平的高低已經(jīng)成為衡量一個(gè)國家制造水平高低的重要標(biāo)準(zhǔn),并在很大程度上決定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開發(fā)能力。 本設(shè)計(jì)課題是支撐板零件沖壓工藝及模具設(shè)計(jì),主要包括落料沖孔復(fù)合模及其彎曲模設(shè)計(jì)。本論文主要闡述了支撐板落料沖孔復(fù)合模及其彎曲模的設(shè)計(jì)步驟過程。 支撐板復(fù)合模采用倒裝式結(jié)構(gòu),具有操作方便安全,生產(chǎn)效率高優(yōu)點(diǎn)。該部分設(shè)計(jì)包括了對(duì)支撐板的沖裁工藝性分析;工件的排樣與搭邊計(jì)算;沖壓力及沖壓中心的計(jì)算;對(duì)模具主要零件的設(shè)計(jì),如沖裁間隙的選擇、凸模、凸凹模和凹模刃口部分尺寸計(jì)算,結(jié)構(gòu)尺寸的確定;對(duì)模具標(biāo)準(zhǔn)件的選用分析,目前,模具零件大多已經(jīng)標(biāo)準(zhǔn)化,設(shè)計(jì)時(shí)選用標(biāo)準(zhǔn)件,如模架主要零部件,導(dǎo)柱、導(dǎo)套、上下模座、彈性元件等。根據(jù)沖壓力的計(jì)算進(jìn)行了壓力機(jī)的選擇。 彎曲模的設(shè)計(jì)與復(fù)合模的設(shè)計(jì)類似,彎曲模結(jié)構(gòu)上略為簡(jiǎn)單。這部分設(shè)計(jì)內(nèi)容包括支撐板彎曲工藝分析;彎曲力計(jì)算;對(duì)彎曲后工件彎曲回彈量計(jì)算;彎曲模主要零件的設(shè)計(jì),即凸模和凹模工作部分尺寸的計(jì)算,結(jié)構(gòu)尺寸的設(shè)計(jì)。對(duì)模具標(biāo)準(zhǔn)件的選用分析,如模架主要零部件,導(dǎo)柱、導(dǎo)套、上下模座、墊板、固定板等。關(guān)鍵詞: 沖壓工藝 落料沖孔 復(fù)合模設(shè)計(jì) 彎曲模設(shè)計(jì) The Design of Support Board Blanking-piercing Compound Dies and Bending DiesAbstract:Die industrial production is the use of broad-based technology and equipment. Mold parts demonstrated by the high precision and high complexity, high consistency, high productivity and low consumption of other processing methods can not be compared. Die technology has become the level of a countrys level of the important manufacturing standards and to a large extent determine the quality, effectiveness and capability to develop new products. The design issue is support plate parts stamping process and die design, including blanking punching and bending die compound die design. This paper described the support plate blanking of punching and bending die-step process of design.Support plate of a flip-style structure, easy to operate with safe, high-productivity advantage. The design includes some of the support plate blanking of the analysis; parts of the layout and take-calculated and ram-pressure center of the calculation; Die major parts of the design, such as punching gap choice, punch, Tuao Mould and Die edge of the size, structure size to be confirmed; die on the selection of standard parts, at present, most of mold parts have been standardized, the design criteria of selection, such as die-main parts, I.-I. Case, - Block, from top to bottom, flexible components, and so on. According to the calculation-pressure presses a choice.Bending Die Design and the design of a similar model, slightly bending die on the simple structure. This part of the design include support plate bending process analysis; bending of the calculation; bending after the rebound in terms of bending the workpiece; bending die major parts of the design, that is, punch and die work of the calculation of the size, structure size of the design. Die standard part of the selection of major components such as die-I.-I. Case, from top to bottom-Block, Dianban the fixed plate, and so on.Keywords: Stamping Process Blanking Piercing Design of Piercing Compound mold Design of Bending mold 1.引 言模具是工業(yè)生產(chǎn)中使用廣泛的基礎(chǔ)工藝裝備。模具生產(chǎn)制件所表現(xiàn)出來的高精度、高復(fù)雜性、高一致性、高生產(chǎn)率和低消耗是其他加工制造方法所不能比擬的。模具技術(shù)水平的高低已經(jīng)成為衡量一個(gè)國家制造水平高低的重要標(biāo)準(zhǔn),并在很大程度上決定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開發(fā)能力。目前,國內(nèi)外模具工業(yè)迅猛發(fā)展,其產(chǎn)值已超過機(jī)床工業(yè)的產(chǎn)值。隨著工業(yè)技術(shù)的迅速發(fā)展,對(duì)模具的設(shè)計(jì)和制造要求也越來越高。我國模具工業(yè)作為一個(gè)獨(dú)立、新型的工業(yè),正處于飛速發(fā)展階段,已經(jīng)成為國民經(jīng)濟(jì)的基礎(chǔ)工業(yè)之一,其發(fā)展前景是十分廣闊的。本論文闡述的是支撐板落料沖孔復(fù)合模及彎曲模設(shè)計(jì),具有非?,F(xiàn)實(shí)的設(shè)計(jì)意義。復(fù)合模是在壓力機(jī)的一次行程中,在同一工位上完成兩道或兩道以上的沖壓工序。復(fù)合模的結(jié)構(gòu)緊湊,沖出來的精度高,適合大批量的生產(chǎn),特別是孔與制件的外形的同心度容易保證,但復(fù)合模的結(jié)構(gòu)復(fù)雜,制造相對(duì)困難。本設(shè)計(jì)支撐板落料沖孔復(fù)合模采用倒裝結(jié)構(gòu),凸凹模安裝在模具下模座上。倒裝復(fù)合模廢料清理無須二次清理,操作方便安全,生產(chǎn)效率較高。復(fù)合模與彎曲模的設(shè)計(jì)過程大致相似,復(fù)合模較彎曲模結(jié)構(gòu)更為復(fù)雜。設(shè)計(jì)上主要是對(duì)凸模、凹模和凸凹模的設(shè)計(jì),其中主要是其工作部分的尺寸設(shè)計(jì),以保證制件的精度和質(zhì)量要求。模具許多零件大多已經(jīng)標(biāo)準(zhǔn)化,如模架、導(dǎo)柱、模座、卸料螺釘、固定板等。在設(shè)計(jì)中,只須根據(jù)設(shè)計(jì)需要和標(biāo)準(zhǔn)合理選定。2.支撐板復(fù)合模設(shè)計(jì)2.1支撐板沖裁工藝性分析本設(shè)計(jì)是一支撐板落料沖孔復(fù)合模及彎曲模,支撐板零件簡(jiǎn)圖:如圖2-1所示 圖 2-1 支撐板零件圖生產(chǎn)批量:大批量材料:45#材料厚度:2mm由零件圖可知,支撐板的加工涉及到落料、沖孔和彎曲三道工序。該零件形狀簡(jiǎn)單、對(duì)稱,尺寸不大,是由簡(jiǎn)單的圓和直線組成,工藝性好。沖裁件的經(jīng)濟(jì)精度不高于IT11級(jí),一般要求落料件精度最好低于IT10級(jí),沖孔件最好低于IT9級(jí)。支撐板零件的加工精度要求為IT10,能達(dá)到經(jīng)濟(jì)精度,適合大批量的生產(chǎn),生產(chǎn)成本經(jīng)濟(jì),經(jīng)濟(jì)性好。幾何形狀,尺寸和精度等情況均符合沖裁的工藝要求。因?yàn)榱慵募庸ど婕叭拦ば?,為保證零件的精度要求,故先采用倒裝式落料沖孔復(fù)合模對(duì)工件沖孔落料加工,再利用彎曲模對(duì)沖裁后的工件進(jìn)行彎曲,從而加工出最后的零件。2.2工件排樣與搭邊1)排樣沖裁件在板料或條料上的布置方式,稱為沖裁件的排樣,簡(jiǎn)稱排樣,排樣的合理與否,不但影響到材料的經(jīng)濟(jì)利用率,降低零件成本,還會(huì)影響到模具結(jié)構(gòu)、生產(chǎn)率、制件質(zhì)量、生產(chǎn)操作方便與安全等。2)材料的利用率排樣的目的是為了合理利用原材料。衡量排樣經(jīng)濟(jì)性、合理性的指標(biāo)是材料的利用率。所謂材料利用率是指沖裁件的實(shí)際面積與所用板料面積的百分比。材料利用率的計(jì)算公式如下: 一個(gè)進(jìn)距的材料利用率的計(jì)算如下: =100% (2-1)式中 A 沖裁件面積(包括內(nèi)形結(jié)構(gòu)廢料),(mm2); n 一個(gè)進(jìn)距內(nèi)沖裁件數(shù)目; b 條料寬度,(mm); h 進(jìn)距,(mm)。 一張板料上總的材料利用率總的計(jì)算如下: 總=()100% (2-2)式中 總 一張板料上沖裁件總數(shù)目;L 板料長(zhǎng),(mm);3) 搭邊 排樣中相鄰兩制件之間的余料或制件與條料邊緣間的余料稱為搭邊。其作用是補(bǔ)償定位誤差和保持有一定的強(qiáng)度和剛度,防止由于條料的寬度誤差、送進(jìn)步距誤差、送料歪斜等原因而沖裁出殘缺的廢品,保證沖出合格的工件,便于送料。搭邊是廢料,從節(jié)省材料出發(fā),搭邊越小越好。但過小的搭邊值容易擠進(jìn)凹模,增加刃口磨損,降低模具壽命,并且也影響沖裁件剪切表面質(zhì)量。一般來說,搭邊值是由經(jīng)驗(yàn)確定的。由支撐板零件圖和排樣圖2-2可得知:因?yàn)榻?jīng)過支撐板毛坯經(jīng)落料沖孔后,還須進(jìn)行彎曲工序才能得到最后支撐板零件,故在進(jìn)行復(fù)合模的排樣時(shí),必須先進(jìn)行彎曲展開計(jì)算。支撐板彎曲展開長(zhǎng)度為:L=(80-2-5)+(40-2-5)+/2(5+0.462) =115.933116 mm沖裁件面積:A=6050+(116-50)30mm2 =4980mm2條料寬度:b =60+2.52+2+45 mm=112 mm 進(jìn)距:h=116 +2.5 mm=118.5 mm一個(gè)進(jìn)距的材料利用率:=( nA / bh)100%=49802 mm2/(112mm118.5 mm)100%=75%圖2-2 排樣圖2.3沖裁間隙沖裁間隙是指沖裁凸模和凹模刃口之間的間隙。單邊用間隙用C表示,雙邊用Z表示。圓形沖裁模雙邊間隙為 Z=D凹-D凸 式中 D凹沖裁模凹模直徑尺寸(mm) D凸 沖裁模凹模直徑尺寸(mm) 沖裁間隙是沖裁過程中一個(gè)重要的工藝參數(shù),間隙的選取是否合理直接影響到?jīng)_裁件質(zhì)量、沖裁力、沖模的使用壽命和卸料力等。1)沖裁間隙的選取沖裁間隙的大小主要與材料的性質(zhì)及厚度有關(guān),材料越硬,厚度越大,則間隙值應(yīng)越大。選取間隙值時(shí)應(yīng)結(jié)合沖裁件的具體要求和實(shí)際的生產(chǎn)條件來考慮。其總的原則應(yīng)該是在保證滿足沖裁件剪斷面質(zhì)量和尺寸精度的前提下,使模具壽命最長(zhǎng)。設(shè)計(jì)時(shí)一般采取查表法確定,在沖模制造時(shí),也可按材料厚度的百分比估算。查表2-1選得間隙值為Zmin=0.15、Zmax=0.19(mm)。表-1 沖裁模刃口始用間隙材料名稱、10、45、09Mn、Q235、B2Q23440、50厚度t初始間隙ZZminZmaxZminZmaxZminZmax1.00.100.140.100.140.100.141.50.120.180.130.180.130.182.00.150.190.170.240.170.24為了使模具能在較長(zhǎng)時(shí)間內(nèi)沖制出合格的零件,提高模具的利用率,一般設(shè)計(jì)模具時(shí)取Zmin作為初始間隙。2.4沖壓力計(jì)算 沖裁力是設(shè)計(jì)模具、選擇壓力機(jī)的重要參數(shù)。計(jì)算沖壓力的目的是為了合理地選擇沖壓設(shè)備和設(shè)計(jì)模具。選用沖壓設(shè)備的標(biāo)稱壓力必須大于所計(jì)算的沖裁力,所設(shè)計(jì)的模具必須能傳遞和承受所計(jì)算的沖裁力,以適應(yīng)沖裁的要求。沖裁力包括沖裁力、卸料力、推件力、頂件力的計(jì)算。1)沖裁力計(jì)算沖裁力的大小主要與材料性質(zhì)、厚度、沖裁件周長(zhǎng)、模具間隙大小及刃口鋒利程度有關(guān)。一般對(duì)于普通平刃口的沖裁,其沖裁力F可按下式計(jì)算: F=Lt (2-3)式中 F 沖裁力, N; L 沖裁件的沖裁長(zhǎng)度, mm;t 板料厚度,mm; 材料的抗剪強(qiáng)度, Mpa; 有時(shí)也可用材料的抗拉強(qiáng)度進(jìn)行計(jì)算: F=Ltb (2-4)式中 b 為材料的抗拉強(qiáng)度,Mpa在落料沖孔復(fù)合模中,沖裁力包含落料力和沖孔力。由支撐板零件圖可得:落料力:L=(60+50+15+66+30+66+15+50)mm=352mm t =2 mm =304MPaF落= Lt= (3522304)N=214.0 KN沖孔力:L1=310=97.34mm t =2 mm =304MPaF孔 = Lt=(97.342304)N =59.2KN2)卸料力、推件力和頂出力從凸模上卸下緊箍著的材料所需的力叫卸料力;把落料件從凹模洞口順著沖裁方向推出去的力叫推件力;逆著沖裁方向頂出來的力叫頂出力。卸料力、推件力和頂出力通常采用經(jīng)驗(yàn)公式進(jìn)行計(jì)算,見式(2-5)。卸料力:F卸=K卸F 落推件力:F推=nK推F孔頂出力:F頂=K頂 F 落 (2-5)式中: K卸、K推、K頂 分別為卸料力、推件力系數(shù),其值見表2-2;n 同時(shí)卡在凹模內(nèi)的零件數(shù);h凹模直壁洞口的高度。表2- 2 推件力、頂件力、卸料力系數(shù)料厚/(mm)K推K頂K卸 鋼0.10.10.50.52.52.56.50.0650.0750.0450.0550.040.050.030.040.10.0630.0550.045 0.140.080.060.05卸料力:F卸=K卸F 落=(0.04214)KN=8.56KN推件力:F推=nK推F孔=(30.05559.2)KN =9.768KN(n=ht=6mm2 mm = 3個(gè))F總 = F 落F孔F卸F推 =(21459.28.569.768)KN=291.5KN2.5模具壓力中心計(jì)算沖模對(duì)工件施加的沖壓力合力的中心稱為模具的沖壓壓力中心。要使沖壓模具正常工作,模具的壓力中心必須通過模柄曲線和壓力機(jī)的滑塊中心線重合。否則在沖壓時(shí)將產(chǎn)生彎矩,使沖壓設(shè)備的滑塊和模具發(fā)生歪斜,引起凸、凹模間隙不均勻,刃口迅速變鈍,并使沖壓設(shè)備和模具的導(dǎo)向機(jī)構(gòu)產(chǎn)生不均勻磨損。壓力中心的計(jì)算采用空間平行力系的合力作用而得求解方法。畫出所示制件,選定坐標(biāo)系xoy,如圖2-3所示。沖裁件以X軸對(duì)稱,所以Y0 = 0。圖1-3L1=50 mm X1=25 mm L2=15 mm X2=50 mm L3=66 mm X3=83 mmL4=30 mm X4=116 mmL5=66 mm X5=83 mm L6=15 mm X6=50 mm L7=50 mm X7=25 mmL8=17.27 mm X8=25 mmL9=17.27 mm X9=25 mmL10=28.26 mm X10=101 mm L11=60 mm X11=0 mm 故 X0 =( L1X1+ L2X2+ L3X3+ L4X4+ L5X5+ L6X6+ L7X7+ L8X8+ L9X9+ L10X10+ L11X11)/ (L1+ L2+ L3+ L4+ L5+ L6+ L7+ L8+ L9+ L10+L11)=53.41 mm2.6凸、凹模刃口尺寸計(jì)算模具刃口尺寸及公差是影響沖裁件精度,因而,正確確定沖裁凸模和凹模刃口的尺寸及公差,是沖模設(shè)計(jì)的重要環(huán)節(jié)。1)凸、凹模刃口尺寸公差計(jì)算的原則實(shí)踐證明,落料件的尺寸接近于其凹模刃口尺寸,而沖孔尺寸接近于其凸模刃口尺寸。所以,落料時(shí)取凹模作為設(shè)計(jì)的基準(zhǔn)件;沖孔時(shí)取凸模作為設(shè)計(jì)的基準(zhǔn)件。計(jì)算凸模和凹模尺寸時(shí)應(yīng)遵循的原則如下:(1)沖孔時(shí),先確定凸模刃口尺寸。凸模刃口的基本尺寸取接近或等于孔的最大極限尺寸,以保證凸模磨損在一定范圍內(nèi)也可使用。而凹模的基本尺寸則按凸模刃口的基本尺寸加上一個(gè)最小間隙值。(2)落料時(shí),應(yīng)先確定凹模刃口尺寸。凹模刃口的基本尺寸取接近或等于零件的最小極限尺寸,以保證凹模磨損在一定范圍內(nèi)也能沖出合格的零件。凸模刃口的基本尺寸則按凹模刃口基本尺寸減小一個(gè)最小間隙值。(3)在確定模具刃口制造公差時(shí),既要能保證工件的精度要求,又能保證合理的間隙數(shù)值。一般模具制造精度比工件精度高34級(jí)。2)凸、凹模刃口尺寸計(jì)算的方法 由于凸模和凹模的加工方法不同,設(shè)計(jì)時(shí)其刃口尺寸計(jì)算應(yīng)分別進(jìn)行計(jì)算。(1) 凸模與凹模分開加工采用凸模與凹模分開加工這種方法,要分別標(biāo)注凸模和凹模刃口尺寸與制造公差,它適用于圓形或簡(jiǎn)單形狀的工件。為了保證間隙值,應(yīng)滿足(2-6)條件。凸 +凹 Zmax-Zmin (2-6)式中 凸 凸模的制造公差; 凹 凹模的制造公差。凸、凹的值見表2-3。表2-3 規(guī)則形狀沖裁時(shí)凸模、凹模的制造公差基本尺寸凸模公差凸凹模公差凹180.0200.02018300.0200.02530800.0200.030下面對(duì)沖孔和落料兩種情況加以分析討論。 沖孔沖孔應(yīng)先確定凸模刃口尺寸,間隙取在凹模上。設(shè)工件孔的尺寸為d+,其計(jì)算公式為: d凸 = (dx) (2-7) d凹 = (d凸Zmin) (2-8) 式中 d凸、d凹 沖孔凸、凹?;境叽?,mm; 工件制造公差,mm;X 因數(shù),其值可查表2-4。 落料根據(jù)刃口尺寸計(jì)算原則,落料時(shí)應(yīng)首先確定凹模刃口尺寸。由于基準(zhǔn)件凹模的刃口尺寸在磨損后會(huì)增大,因此應(yīng)使凹模的基本尺寸接近工件輪廓的最小極限尺寸,再減小凸模尺寸以保證最小合理間隙值Zmin。仍然是凸模取負(fù)偏差,凹模取正偏差。設(shè)工件尺寸為D0-,其計(jì)算式如下: D凹 = (D x) (2-9) D凸 =(D凹Zmin) (2-10)2-4 因數(shù)x材料厚度t/mm非圓形x值圓形x值10.750.50.750.5工件公差/ mm10.160.170.350.360.160.16120.200.210.410.420.200.20240.240.250.490.500.240.2440.300.210.590.600.300.30(2) 凸模與凹模配合加工對(duì)于形狀復(fù)雜或材料薄的零件,為了保證凸、凹模之間一定的間隙值,必須采用配合加工。此方法是先加工好其中的一件(凸?;虬寄#┳鳛榛鶞?zhǔn)件,然后以此基準(zhǔn)件為標(biāo)準(zhǔn)來加工另一件,使它們之間保持一定的間隙。但用此方法制造的凸、凹模是不能互換的。由于復(fù)雜工件形狀各部分尺寸性質(zhì)不同,凸模與凹模磨損情況也不同,所以基準(zhǔn)件的刃口尺寸需要按不同方法計(jì)算。如圖2-4 a)為一落料件,應(yīng)以凹模為基準(zhǔn)件,凹模的磨損情況可分為三類:第一類是凹模磨損后增大的尺寸(圖中A類尺寸);第二類是凹模磨損后減小的尺寸(圖中B類尺寸);第三類是凹模磨損后沒有增減的尺寸(圖中C類尺寸)。 a) 落料件 b) 沖孔件圖2-4 落料、沖孔件的尺寸分類同理,對(duì)于圖2-4 b)的沖孔件,應(yīng)以凸模為基準(zhǔn)件,可根據(jù)凸模的磨損情況,按圖示方法將尺寸分為A、B、C三類。當(dāng)凸模磨損后,其尺寸的增減情況也是增大、減小、不變這一同樣的規(guī)律。因此,對(duì)于復(fù)雜形狀的落料件或沖孔件,其模具基準(zhǔn)件的刃口尺寸均可按下式計(jì)算。 A類: Aj(Amaxx) B類: Bj(Bminx) C類: Cj(Cmin0.5) (2-11)式中 Aj 、 Bj 、 Cj 基準(zhǔn)件尺寸,mm;Amax 、Bmin、 Cmin工件極限尺寸,mm; 工件公差,mm。對(duì)于與基準(zhǔn)件相配合的非基準(zhǔn)件凸?;虬寄5娜锌诔叽绾凸钜话悴辉趫D樣上標(biāo)注,而是僅標(biāo)注基本尺寸,并注明其公差按基準(zhǔn)件凹?;蛲鼓5膶?shí)際尺寸配做,并保證應(yīng)留的間隙值。另外,如果按照加工的需要,希望對(duì)落料件以凸模為基準(zhǔn),對(duì)沖孔件以凹模為基準(zhǔn)件,則模具基準(zhǔn)件的刃口尺寸可按式2-12計(jì)算: A類: Aj(AmaxxZmin) B類: Bj(BminxZmin)C類: Cj(Cmin0.5) (2-12)由上文中間隙選擇中,查表得間隙值Zmin015 mm Zmax0.19 mm對(duì)沖孔11mm、9mm采用凸、凹模分開加工的方法,其凸、凹模刃口部分尺寸計(jì)算如下:查表2-3得凸、凹模制造公差: 凸=0.020mm 凹=0.020mm較核:Zmax- Zmin0.19-0.15=0.04 mm,凸 -凹= 0.04 mm滿足Zmax- Zmin凸 -凹條件 查表2- 4得因數(shù)x為: x0.75 根據(jù)式(2-7)、(2-8)可得沖孔11mm d凸11=(d1 + x)(110.750.058) mm 11.04 mm d凹11(d凸 1Zmin )(11.040.15) mm 11.19 mm 沖孔9mm d凸9=(d 2+ x)(90.750.058) mm 9.04 mm d凹9(d凸 2Zmin )(9.04+0.15) mm =9.19 mm由于支撐板落料形狀較復(fù)雜,故采用配合加工方法,其凸、凹模刃口部分尺寸計(jì)算如下:以凹模為基準(zhǔn)件,因凹模磨損后,刃口部分尺寸都增大,因此屬于A類尺寸。查表2- 4得因數(shù)x為:當(dāng) 0.16時(shí),x1 當(dāng)0.170.35 時(shí),x0.75按式(2-11) Aj (Amaxx) 60凹 (6010.12) mm = 59.88 mm 50凹 (5010.1) mm = 49.90 mm 30凹(3010.084) mm =29.916 mm 116凹(11610.14) mm =115.96 mm凸模尺寸按凹模尺寸配制,保證單面間隙為Zmin/2 Zmax/2。2.7復(fù)合模凹、凸凹模的結(jié)構(gòu)設(shè)計(jì)1)凹模(1) 凹模的類型按凹模的刃口孔形可分為圓柱形孔口凹模、錐形孔口凹模;按凹模的結(jié)構(gòu)可分為整體式凹模和鑲拼式凹模。(2) 凹模刃口形式錐形刃口:如圖2-5a)所示。沖裁件或廢料容易通過,凹模磨損后的修磨量較小。但刃口強(qiáng)度較低,刃口尺寸在修磨后略有增大。適用于形狀簡(jiǎn)單,精度要求不高,材料厚度較薄工件的沖裁。當(dāng)t2.5mm時(shí),15;當(dāng)t2.56mm時(shí),30;當(dāng)采用電火花加工凹模時(shí),420。柱形刃口:如圖2-5b)所示。刃口強(qiáng)度較高,修磨后刃口尺寸不變。但孔口容易積存工件或廢料,推件力大且磨損大。適用于形狀復(fù)雜或精度要求較高工件的沖裁。當(dāng)t24.9 mm故所選彈簧是合適的。規(guī)格:彈簧84590外徑:D=45 mm鋼絲直徑:d=8.0 mm自由高度:H0=90 mm裝配高度:H2=H0-h預(yù)=90-16.4=73.6 mm(2)卸料螺釘表2-11 圓柱頭內(nèi)六角卸料螺釘(摘自JB/T7650.6-1994) (mm)圓柱頭卸料螺釘M1090 JB/T7650.6 材料:45熱處理硬度3540HRC技術(shù)條件:GB/T3098.32000的規(guī)定數(shù)量:6個(gè)6)推件裝置剛性推件裝置:常安裝在上模部分。推件力是由壓力機(jī)的橫桿通過推桿、頂板、頂桿傳給推件板。推桿長(zhǎng)短要一致,分布要均勻。頂板一般裝在上模座的孔內(nèi),形狀按被推下的工件形狀來決定。(1) 頂板頂板的選擇見下表2-12的國標(biāo):此處選用頂板A50 JB/T7650.4材料:45熱處理硬度4348HRC技術(shù)條件:按JB/T76531994的規(guī)定 頂板(摘自JB/T7650.4-1994) (2)推桿推桿的選擇。帶肩推桿(摘自JB/T7650.1-1994) (mm)推桿A1680JB/T7650.1 材料:45 熱處理硬度:4348HRC 技術(shù)條件:按JB/T76531994的規(guī)定(3)頂桿頂桿的選擇見下表的國標(biāo):頂桿A850 JB/T7650.3 材料:45 熱處理硬度4348HRC 技術(shù)條件:按JB/T76531994的規(guī)定頂桿(摘自JB/T7650.3-1994) (mm)2.9模具閉合高度與壓力機(jī)裝模高度的關(guān)系模具的閉合高度H是指模具在完成沖壓工序時(shí)上模座的上平面與下模座的下平面之間的高度。模具的閉合高度必須與壓力機(jī)的裝模高度相適應(yīng)。由于壓力機(jī)的連桿長(zhǎng)度可以調(diào)節(jié),所以壓力機(jī)的裝模高度可以調(diào)節(jié)的。當(dāng)連桿調(diào)節(jié)到最短時(shí)為壓力機(jī)的最大裝模高度Hmax: 當(dāng)連桿調(diào)節(jié)到最長(zhǎng)時(shí)為壓力機(jī)的最小裝模高度Hmin.模具的閉合高度H應(yīng)介于壓力機(jī)的最大裝模高度Hmax與最小裝模高度Hmin之間,否則就不能保證正常的安裝與工作。其關(guān)系為: Hmax5H Hmin10 (2-16)若模具的閉合高度H Hmax ,則壓力機(jī)不能用,若H Hmin ,則可用加墊板,設(shè)墊板厚度為H1,則有 HmaxH15H HminH110 (2-17)2.10模架主要零部件1) 模架模架由模座、導(dǎo)柱及模柄等零件組成。模架是整副模具的骨架,模具的全部零件都固定在它的上面,并且承受沖壓過程中的全部負(fù)荷。模架的上模座通過模柄與壓力機(jī)滑塊相連,下模座螺釘壓板固定在壓力機(jī)工作臺(tái)面上。上、下模之間靠模架的導(dǎo)向裝置來保持其精確位置,以引導(dǎo)凸模的運(yùn)動(dòng),保證沖裁過程中間隙均勻。一般模架均已標(biāo)準(zhǔn)化,設(shè)計(jì)模具時(shí),應(yīng)加以正確選用。模架的要求:要有足夠的強(qiáng)度與剛度; 要有足夠的精度(如上、下模座要平行,導(dǎo)柱、導(dǎo)套中心要與上、下模座垂直,模柄要與上模座垂直等);上、下模之間的導(dǎo)向要精確(導(dǎo)向件之間的間隙要很?。?,上、下模之間的移動(dòng)應(yīng)平穩(wěn)和無滯住現(xiàn)象。模架的形式 在標(biāo)準(zhǔn)模架中,應(yīng)用最廣泛的是用導(dǎo)柱和導(dǎo)套作為導(dǎo)向裝置的模架。根據(jù)導(dǎo)柱和導(dǎo)套配置的不同有以下四種基本形式:圖2-6 后側(cè)導(dǎo)柱模架(1)后側(cè)導(dǎo)柱模架 后側(cè)導(dǎo)柱送料方便,可以縱向和橫向送料。但是沖壓時(shí)如果有偏心載荷,則導(dǎo)柱、導(dǎo)套會(huì)單邊磨損。它不能用于模柄與上模座浮動(dòng)連接的模具。 (2)中間導(dǎo)柱模架 兩導(dǎo)柱左右對(duì)稱分布,受力平衡,所以導(dǎo)柱、導(dǎo)套磨損均勻。但是只有一個(gè)送料方向。圖2-7 中間導(dǎo)柱模架(3)對(duì)角導(dǎo)柱模架 導(dǎo)柱的布置是對(duì)稱的,而且縱橫都能送料。對(duì)角導(dǎo)柱模架的兩導(dǎo)柱之間距離較遠(yuǎn),在導(dǎo)柱、導(dǎo)套之間同樣間隙的條件下,這種模架的導(dǎo)向精度較高。圖2-8 對(duì)角導(dǎo)柱模架(4)四導(dǎo)柱模架 其導(dǎo)向精度與剛度都較好,用于大型沖模。 圖2-9 四周導(dǎo)柱模架 在本設(shè)計(jì)中采用后側(cè)導(dǎo)柱模架。其選用標(biāo)準(zhǔn)件表2-15。 后側(cè)導(dǎo)柱模架(摘自GB/T2851.3-1990) (mm)模架250200190I GB/T2851.5 模架技術(shù)條件:按JB/T80501999的規(guī)定 2)導(dǎo)柱與導(dǎo)套 導(dǎo)柱與導(dǎo)套的結(jié)構(gòu)與尺寸都可直接由標(biāo)準(zhǔn)中選取。在選用時(shí)應(yīng)注意導(dǎo)柱的長(zhǎng)度應(yīng)保證沖模在最低工作位置時(shí),下模座底面與導(dǎo)柱底面的距離應(yīng)為0.51。導(dǎo)柱與導(dǎo)套之間的配合根據(jù)沖裁模的間隙大小選用。當(dāng)沖裁板厚載0.8以下的模具時(shí),選用H6/h5配合的I級(jí)精度模架。當(dāng)沖裁板厚為0.84時(shí),選用H7/h6配合的級(jí)精度模架。(1)導(dǎo)柱標(biāo)準(zhǔn) B型導(dǎo)柱(摘自GB/T2861.2-1990) (mm)導(dǎo)柱B32h615050 GB/T2861.2 技術(shù)條件:按JB/T80701995的規(guī)定(2)導(dǎo)套的標(biāo)準(zhǔn) A型導(dǎo)柱套(摘自GB/T2861.6-1990) (mm)導(dǎo)套A32H710543 GB/T2861.6 技術(shù)條件:按JB/T80701995的規(guī)定3)模座(1)后側(cè)導(dǎo)柱上模座標(biāo)準(zhǔn)上模座25020045GB/T2855.5技術(shù)條件:按JB/T80701995的規(guī)定(2) 后側(cè)導(dǎo)柱下模座標(biāo)準(zhǔn)下模座25020050GB/T2855.6技術(shù)條件:按JB/T80701995的規(guī)定(摘自GB/T2855.6-1990)。4. 模柄模柄有剛性與浮動(dòng)兩大類。所謂剛性模柄是指模柄與上模座是剛性連接,不能發(fā)生相對(duì)運(yùn)動(dòng)。所謂浮動(dòng)模柄是指模柄相對(duì)上模座能做微小的擺動(dòng)采用浮動(dòng)模柄后,壓力機(jī)滑塊的運(yùn)動(dòng)誤差不會(huì)影響上、下模的導(dǎo)向。常用的剛性模柄有四種型式:整體式、壓入式、旋入式和凸緣式。本設(shè)計(jì)采用凸緣式。模柄 B50 JB/T7646.3材料:Q235-AF技術(shù)條件:按JB/7853-1994的規(guī)定.11壓力機(jī)選擇1) 壓力機(jī)選用原則確定壓力機(jī)規(guī)格時(shí),一般應(yīng)遵循以下原則。(1)壓力機(jī)的公稱壓力不小于沖壓工序所需的壓力。(2)壓力機(jī)滑塊行程應(yīng)滿足工件高度上能獲得所需尺寸,并在沖壓后能順利地從模具上取出工件。(3)壓力機(jī)的閉合高度、工作臺(tái)尺寸和滑塊尺寸等應(yīng)滿足模具的正確安裝。尤其是壓力機(jī)的閉合高度應(yīng)于沖模的閉合高度相適應(yīng)。(4)壓力機(jī)的滑塊行程次數(shù)應(yīng)符合生產(chǎn)率和材料變形速度的要求。2)曲柄壓力機(jī)規(guī)格選擇 曲柄壓力機(jī)按床身及結(jié)構(gòu)可分為開式和閉式曲柄壓力機(jī)。開式壓力機(jī)有固定臺(tái)式、可傾式和升臺(tái)式三種。固定臺(tái)式壓力機(jī)剛性、抗震性和穩(wěn)定性好,適用較大噸位??蓛A式壓力機(jī)產(chǎn)生的廢料可通過自重滑下。升臺(tái)式壓力機(jī)適用于模具高度變化較大的沖孔、修邊及彎曲工序。根據(jù)2.4沖壓力的計(jì)算,總的沖裁力為221.1KN,考慮到壓力機(jī)的適用范圍,故選擇開式雙柱可傾式壓力機(jī)。型號(hào)為J2340型,其部分參數(shù)如下:標(biāo)稱壓力:400KN滑塊行程:100mm行程次數(shù):45次/min連桿調(diào)節(jié)長(zhǎng)度:65 mm最大裝模高度:265 mm工作臺(tái)尺寸(前后左右):460 mm 700 mm模柄孔尺寸(直徑深度):50 mm 70 mm電動(dòng)機(jī)功率:5.5KW支撐板彎曲模設(shè)計(jì)3.1支撐板彎曲工藝性分析彎曲是使材料產(chǎn)生塑性變形、形成有一定角度形狀零件的沖壓工序。彎曲工序可以用模具在普通壓力機(jī)上進(jìn)行,也可以在專用的彎曲機(jī)上或彎曲設(shè)備上進(jìn)行。具有良好的工藝性的彎曲件,不僅能簡(jiǎn)化彎曲工藝過程和模具設(shè)計(jì),而且能夠提高彎曲件的精度和節(jié)省材料。由零件圖2-1所示,支撐板屬于板材彎曲。支撐板彎曲半徑是R5mm,彎曲角度成90,彎邊長(zhǎng)40mm,符合彎曲的工藝性要求,彎曲零件的孔離彎曲線大于要求的最小距離,彎曲時(shí)不會(huì)發(fā)生孔變形,具有良好的彎曲工藝性,足以達(dá)到制件精度質(zhì)量要求。3.2支撐板彎曲工藝力的計(jì)算1) 合理地選擇彎曲用的壓力機(jī)和設(shè)計(jì)模具,必須計(jì)算彎曲力。彎曲力的大小不僅與毛坯的尺寸、材料的力學(xué)性能、彎曲半徑等有關(guān),而且與彎曲方式也有很大關(guān)系,從理論上計(jì)算彎曲力是比較繁雜,精確度也不高,因此生產(chǎn)中常用經(jīng)驗(yàn)公式進(jìn)行計(jì)算。V形自由彎曲 (3-1)V形約束彎曲 (3-2)U形自由彎曲 (3-3)U形約束彎曲 (3-4)式中:P彎曲力 NC系數(shù),取11.3t材料厚度,mmb彎曲件的寬度,mmr凸模圓角半徑,mm材料的抗拉強(qiáng)度,MpaK系數(shù),取0.30.62) 頂件力和壓料力的計(jì)算頂件力或壓料力Q值可近似取自由彎曲力的30%80%,即 Q=(0.30.8)P (3-5)式中:Q頂件力或壓料力,N; P自由彎曲力,N3) 支撐板彎曲力的計(jì)算按V形約束彎曲計(jì)算,則按公式3-2和3-5可得:彎曲力P1=0.6 =3.159 KN頂件力P2=(0.30.8)P1=0.63159 =1.895 KN 總的彎曲力P總 =P1+P2=3.159 KN+1.895KN=5.054 KN(C取1.3,取390MPa) 3.3撐板彎曲回彈計(jì)算1) 壓彎過程并不完全是材料的塑性變形過程,其彎曲部位還存在著彈性變形。彎曲工件從模具中取出后,由于彈性變形的恢復(fù),使工件的彎角和彎曲半徑發(fā)生變化,所以被彎曲零件的形狀與模具的性質(zhì)不完全一致,這種現(xiàn)象稱為回彈?;貜椀拇笮⊥ǔS媒嵌然貜椓亢颓驶貜梺肀硎?。2) 影響回彈的因素(1)材料的力學(xué)性能 角度回彈量及曲率回彈量與材料的屈服點(diǎn)s成正比,與彈性模量E成反比。(2)彎曲半徑與材料厚度的比值r/t 當(dāng)其他條件相同時(shí),角度回彈量隨r/t值的增大而增大,曲率回彈量隨r/t的增大而減小。(3)彎曲角 彎曲角越大,表示變形區(qū)域越大,角度回彈量也越大。而曲率回彈量與彎曲角度大小無關(guān)。(4)彎曲工件的形狀 一般彎制U形工件要比彎制V形工件的回彈量要小。(5)模具間隙 在彎曲U形工件時(shí),凸模與凹模之間的間隙越小,則回彈量越小。(6)校正彎曲時(shí)的較正力 校正力小,回彈量大,增加回彈量可減小回彈量。3) 角度回彈量的確定由于影響角度回彈量數(shù)值的因素較多,而各種因素 Modern mold making I .The stamping die development history and status of technology In 1953, the Changchun First Automobile Works in China for the first time established a die shop, the car plant in 1958 began manufacturing automotive panel die. 60 years of the 20th century began producing fine blanking dies. Come a long road of development, China has formed about 300 billion (not including Hong Kong, Macao and Taiwan statistics.) Production capacity of various types of stamping dies. Formed, such as Ningbo and Zhejiang HUANGYAN region Die village; Guangdong Corporation and some large rapid rise of township enterprises, K el o n, M id e a, K on ka and other groups have established their own mold manufacturing center; joint ventures and wholly foreign-owned the mold companies now have thousands. With the pace with international standards continues to accelerate, increasing market competition, production and design of the mold has been growing recognition that product quality, cost, and new product development capacities. Mold manufacturing technology to measure a countrys manufacturing sector has become an important indicator of the level, and largely determine the survival space. At present, China stamping die, whether in quantity or in quality, technology and other capabilities have made significant progress, but with national needs and the world advanced level, the gap is still great. In the international competition situation, I had the mold industry has rapidly developed, many specialized research centers continue to die set up, mold steel of the structure and made significant achievements, but there is still a big gap. First, imports of high-tech mold most of the large precision molds, mold and exports most of the lower middle and low-tech die, so high-tech high-grade die stamping die market, the overall satisfaction rate is lower than satisfaction rate, which mold development has lagged behind the production of stamping parts, and low-technology market to meet the rate of middle and low die stamping die is higher than the overall market to meet the rate; second is due to the price of the mold is much lower than international market prices, has some competition force, so its prospects in the international market; third in recent years, Hong Kong-and Taiwan-owned, foreign-funded enterprises in China developed rapidly in a large number of these enterprises stamping dies produced for own use no precise statistics, it is not included in the figures being. II. Modern mold manufacturing technology development The development of modern technology should die mold products to meet the short delivery time, high precision, good quality, low price request for service. Urgent need to develop to meet this requirement as a number of (1) to comprehensively promote universal DBD / DBM / DBE technology Die DBD / DBM / DBE technology is the development direction of mold design and manufacturing. With the computer software development and progress, universal DBD / DBM / DBE technology, conditions are ripe, the businesses will increase DBD / DBM technical training and technical service efforts; further expand the scope of DBE technology. The development of computers and networks are making DBD / DBM / DBE technology trans-regional, cross-enterprise, campus-wide in the industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible. (2) High-speed milling The development of foreign high-speed milling process in recent years, significantly improve the processing efficiency, and to get a high surface finish. In addition, the module can also be processed with high hardness, but also with low temperature rise, thermal deformation and so on. High-speed milling technology, automotive, home appliance manufacturing industry in the large cavity mold injected new vitality. It currently has more agile, intelligent, integrated direction. (3) die scanning and digitizing system High-speed scanner provides scanning system and mold from the model or in kind to the processing of the scanned model of the desired number of features required, greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, the DBD data in different formats, for mold manufacturing reverse engineering . (4) the degree of standardization to improve die Degree of standardization of the mold is increasing, estimates that the current use of standard mold coverage has reached about 30%. Developed countries is generally about 80%. (6) high-quality materials and advanced surface treatment technology Application of high quality steel and the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface should improve the development of advanced technologies such as laser surface treatment. (7) Mold Polishing Automation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual in order to improve the quality of the mold surface is important trends. (8) die development of automatic processing system This is our long-term development goals mold industry. Automatic mold machine processing system should be more than the rational combination; with accompanying plate positioning fixture or positioning; a complete equipment, tool CNC database; a complete CNC flexible synchronization system; a quality monitoring and control system. Of course, as the user to choose the right equipment, if the selection properly, not only can not make money but make the machine work into the bitter situation. III. Modern mold manufacturing technology trends Die technology is mainly towards the future development trend of information technology, high-speed high-precision production and development. Therefore, the design technology, the development focus is to promote DBD / DBE / DBM technology, and continue to improve efficiency, especially in sheet metal forming process of the computer simulation analysis. Die DBD, DBE technology should be declared human, integration, intelligence and network direction, and improve the mold DBD, DBM system-specific level. To improve the DBD, DBE, DBM technology, establish a complete database and development of the mold expert systems and improve software usability is very important. From the processing technology, the development focused on high-speed processing and precision machining. At present, the development of highly processed high-speed milling, high speed polishing and high-speed electronic processing and rapid tooling technologies. At present, the development of precision machining parts precision mold and the surface roughness of less 1m Pa 0.1m variety of precision machining. , I V. the modern mold manufacturing 1.CAD/CAE/CAM computer-aided design, simulation, manufacturing integration CAD / CAE / CAM integration, integration technology is the most advanced modern mold making the most reasonable mode of production. Use of computer-aided design, support engineering and manufacturing systems, according to the respective mold parts designed to prepare the NC machining of parts from design to manufacturing process is an inevitable process, which is from CAD / CAE / CAM system carried out, The processing line cable input directly from the processing machine, can be used in the preparation of procedures of processing the system analog functions, will be part tool, tool holder, fixture, platform and tool speed, path, etc. are displayed, to check the program prepared correctness. In short the CAD / CAE / CAM system development and simulation of processing can not fully understand the problems identified, resulting in processing prior to prepare the complete set of processing change work, which for the efficient and accurate processing of the mold has a very important part . 2. Advanced equipment in the modern mold making role The inevitable trend of modern mold making, machining is possible to replace the manual process, especially now that CNC lathes, multi-axis machine tools, CNC mold engraving machine, EDM machine, CNC precision grinding machines, coordinate measuring machines, scanners and other modern equipment widely used in factories, but most of these devices are basically the application of the procedures used CAD / CAE / CAM system to produce, the operator of work procedures in accordance with the provisions of work piece clamping, with a cutting tool and operation of the machine will be able to automatically complete the processing tasks, and created the ideal mold parts or complete the processing operation for the next part. 3. Die materials and surface treatment technology Due to improper selection and use of materials, resulting in premature failure of the mold, which accounts for more than 45% die failure. Price structure throughout the mold, the materials, the proportion of small, generally 20% to 30%, therefore, the choice of high quality steel and application of surface treatment technology to improve the life of the mold it is very necessary. For tool steel, the ESR technique to be used, such as the use of powder metallurgy high speed steel powders manufactured. Variety of different specifications tool steel, refined products, products of, try to shorten the delivery time is also an important trend. Mold heat treatment of the main trends: the infiltration of a single element to the multi-element penetration, complex permeability (such as TD method) development; by the general spread of the CVD, PVD, PCVD, ion penetration, ion implantation and other direction; addition, the current laser enhanced glow plasma technology and electroplating (plating) and other anti-corrosion technology to strengthen more and more attention. V.reverse engineering Reverse engineering is the first of the parts (the processing of the product) to scan the CAD data generated in multiple formats, and then in the other CAD / CAE / CAM software in the modified design, the technology is the most popular modern mold manufacturing mold manufacturing technology. mold manufacturing company dedicated to development and production of the scanning system, it can be successfully applied to reverse engineering, mold manufacturing, it can not only improve the performance of CNC machine tools, expanding the function of CNC machine tools, CNC machine tools but also improve efficiency., Renscan200, Cyclone high-speed scanner has been Qingdao H a I e r, Jinan Q I n g q i, national mold center and other units started. V I .Summary and Outlook With the development and progress of computer software, CAD / CAE / CAM technology is getting more mature, and its application in the modern mold will become more widespread. Can be expected in the near future, mold manufacturing to separate from the machine manufacturing industry, and independent national economy to become an indispensable pillar industries, while also further promote the integration of the mold manufacturing technology, intelligence, beneficiary , efficient direction.
收藏