新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率

上傳人:無*** 文檔編號:62280170 上傳時間:2022-03-14 格式:DOC 頁數:6 大?。?5.50KB
收藏 版權申訴 舉報 下載
新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率_第1頁
第1頁 / 共6頁
新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率_第2頁
第2頁 / 共6頁
新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率》由會員分享,可在線閱讀,更多相關《新編高考數學浙江理科一輪【第十一章】統(tǒng)計與概率 第3講隨機事件的概率(6頁珍藏版)》請在裝配圖網上搜索。

1、新編高考數學復習資料 第3講 隨機事件的概率 一、選擇題 1.把12人平均分成兩組,再從每組里任意指定正、副組長各一人,其中甲被指定為正組長的概率是(  ) A. B. C. D. 解析 甲所在的小組有6人,則甲被指定正組長的概率為. 答案 B 2.加工某一零件需經過三道工序,設第一、二、三道工序的次品率分別為、、,且各道工序互不影響,則加工出來的零件的次品率為(  ) A. B. C. D. 解析 加工出來的

2、零件的次品的對立事件為零件是正品,由對立事件公式得 加工出來的零件的次品率. 答案 C 3.盒中裝有10個乒乓球,其中6個新球,4個舊球.不放回地依次取出2個球使用,在第一次取出新球的條件下,第二次也取到新球的概率為 (  ). A. B. C. D. 解析 第一次結果一定,盒中僅有9個乒乓球,5個新球4個舊球,所以第二次也取到新球的概率為. 答案 C 4.把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于 (  ). A. B. C. D. 解析 法一 P

3、(B|A)===. 法二 A包括的基本事件為{正,正},{正,反},AB包括的基本事件為{正,正},因此P(B|A)=. 答案 A 5.從1,2,3,4這四個數中一次隨機地取兩個數,則其中一個數是另一個數的兩倍的概率是(  ). A. B. C. D. 解析 采用枚舉法:從1,2,3,4這四個數中一次隨機取兩個數,基本事件為:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6個,符合“一個數是另一個數的兩倍”的基本事件有{1,2},{2,4},共2個,所以所求的概率為. 答案

4、 B 6.從裝有3個紅球、2個白球的袋中任取3個球,則所取的3個球中至少有1個白球的概率是 (  ). A. B. C. D. 解析 從裝有3個紅球、2個白球的袋中任取3個球通過列舉知共有10個基本事件;所取的3個球中至少有1個白球的反面為“3個球均為紅色”,有1個基本事件,所以所取的3個球中至少有1個白球的概率是1-=. 答案 D 二、填空題 7.對飛機連續(xù)射擊兩次,每次發(fā)射一枚炮彈.設A={兩次都擊中飛機},B={兩次都沒擊中飛機},C={恰有一次擊中飛機},D={至少有一次擊中飛機},其中彼此互斥的事件是________,互為對立事件

5、的是________. 解析 設I為對飛機連續(xù)射擊兩次所發(fā)生的所有情況,因為A∩B=?,A∩C=?,B∩C=?,B∩D=?.故A與B,A與C,B與C,B與D為彼此互斥事件,而B∩D=?,B∪D=I,故B與D互為對立事件. 答案 A與B、A與C、B與C、B與D B與D 8.在△ABC中,角A、B、C所對的邊分別是a、b、c,A=30°,若將一枚質地均勻的正方體骰子先后拋擲兩次,所得的點數分別為a、b,則滿足條件的三角形有兩個解的概率是_______. 解析 要使△ABC有兩個解,需滿足的條件是因為A=30°,所以滿足此條件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=

6、5,a=4;b=6,a=4;b=6,a=5,共6種情況,所以滿足條件的 三角形有兩個解的概率是=. 答案 9.甲、乙兩顆衛(wèi)星同時監(jiān)測臺風,在同一時刻,甲、乙兩顆衛(wèi)星準確預報臺風的概率分別為0.8和0.75,則在同一時刻至少有一顆衛(wèi)星預報準確的概率為________. 解析 由對立事件的性質知在同一時刻至少有一顆衛(wèi)星預報準確的概率為1-(1-0.8)(1-0.75)=0.95. 答案 0.95 10.在100件產品中有95件合格品,5件不合格品.現(xiàn)從中不放回地取兩次,每次任取一件,則在第一次取到不合格品后,第二次再次取到不合格品的概率為________. 解析 設A={第一次取到

7、不合格品},B={第二次取到不合格品},則P(AB)=,所以P(B|A)=== 答案  三、解答題 11.甲、乙二人進行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結束.假設在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結果相互獨立.已知前2局中,甲、乙各勝1局. (1)求再賽2局結束這次比賽的概率; (2)求甲獲得這次比賽勝利的概率. 解 記Ai表示事件:第i局甲獲勝,i=3,4,5,Bj表示事件:第j局乙獲勝,j=3,4. (1)記A表示事件:再賽2局結束比賽. A=A3A4+B3B4. 由于各局比賽結果相互獨立,故 P(A)=P(A3A4+B3

8、B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4) =0.6×0.6+0.4×0.4=0.52. (2)記B表示事件:甲獲得這次比賽的勝利. 因前兩局中,甲、乙各勝一局,故甲獲得這次比賽的勝利當且僅當在后面的比賽中,甲先勝2局,從而 B=A3A4+B3A4A5+A3B4A5, 由于各局比賽結果相互獨立,故 P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5) =P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5) =0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648. 12.某

9、公務員去開會,他乘火車、輪船、汽車、飛機去的概率分別為0.3,0.2,0.1,0.4,且只乘一種交通工具去開會. (1)求他乘火車或乘飛機去開會的概率; (2)求他不乘輪船去開會的概率; (3)如果他乘某種交通工具去開會的概率為0.5,請問他有可能是乘何種交通工具去開會的? 解 (1)記“他乘火車去開會”為事件A1,“他乘輪船去開會”為事件A2,“他乘汽車去開會”為事件A3,“他乘飛機去開會”為事件A4,這四個事件不可能同時發(fā)生,故它們是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7. (2)設他不乘輪船去開會的概率為P, 則P=1-P(A2)=1-

10、0.2=0.8. (3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5, 故他有可能乘火車或輪船去開會,也有可能乘汽車或飛機去開會. 13.黃種人群中各種血型的人所占的比如下表所示: 血型 A B AB O 該血型的人所占比/% 28 29 8 35 已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問: (1)任找一個人,其血可以輸給小明的概率是多少? (2)任找一個人,其血不能輸給小明的概

11、率是多少? 解 (1)對任一人,其血型為A,B,AB,O型血的事件分別記為A′,B′,C′,D′,它們是彼此互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35. 因為B,O型血可以輸給B型血的人,故“可以輸給B型血的人”為事件B′+D′.根據互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64. (2)法一 由于A,AB型血不能輸給B型血的人,故“不能輸給B型血的人”為事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36. 法二 因為事件“其血可以輸給B

12、型血的人”與事件“其血不能輸給B型血的人”是對立事件,故由對立事件的概率公式,有P(])=1-P(B′+D′)=1-0.64=0.36. 即:任找一人,其血可以輸給小明的概率為0.64,其血不能輸給小明的概率為0.36. 14.如圖,A地到火車站共有兩條路徑L1和L2,據統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內的頻率如下表: 時間(分鐘) 10~20 20~30 30~40 40~50 50~60 L1的頻率 0.1 0.2 0.3 0.2 0.2 L2的頻率 0 0.1 0.4 0.4 0.1 現(xiàn)甲、乙兩人分別有40分鐘和50分鐘

13、時間用于趕往火車站. (1)為了盡最大可能在各自允許的時間內趕到火車站,甲和乙應如何選擇各自的路徑? (2)用X表示甲、乙兩人中在允許的時間內能趕到火車站的人數,針對(1)的選擇方案,求X的分布列和數學期望. 解 (1)Ai表示事件“甲選擇路徑Li時,40分鐘內趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內趕到火車站”,i=1,2. 用頻率估計相應的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲應選擇L1; P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=

14、0.9, ∵P(B2)>P(B1),∴乙應選擇L2. (2)A,B分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內趕到火車站,由(1)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨立, ∴P(X=0)=P()=P()P()=0.4×0.1=0.04, P(X=1)=P(B+A)=P()P(B)+P(A)P() =0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. ∴X的分布列為 X 0 1 2 P 0.04 0.42 0.54 ∴E(X)=0×0.04+1×0.42+2×0.54=1.5.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!