伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì).ppt
《伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì).ppt》由會員分享,可在線閱讀,更多相關(guān)《伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì).ppt(89頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì) 概述伺服系統(tǒng)典型負(fù)載分析和計(jì)算 伺服系統(tǒng)控制方案選擇 伺服電機(jī)選擇伺服檢測裝置的選擇 放大裝置選擇 概述 伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì)的內(nèi)容對控制對象運(yùn)動與動力學(xué)分析 負(fù)載分析 執(zhí)行電動機(jī)及傳動裝置的確定 測量元件的選擇 放大裝置的選擇與設(shè)計(jì)計(jì)算 伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì)目的確定系統(tǒng)的基本不變部分的結(jié)構(gòu) 穩(wěn)態(tài)設(shè)計(jì)的結(jié)果確定了系統(tǒng)的控制能力 動態(tài)設(shè)計(jì)計(jì)算則是在此基礎(chǔ)上使系統(tǒng)達(dá)到要求的動態(tài)性能 包括滿足動態(tài)誤差 穩(wěn)定性及快速性要求 伺服系統(tǒng)穩(wěn)態(tài)設(shè)計(jì)特點(diǎn)穩(wěn)態(tài)設(shè)計(jì)運(yùn)用基礎(chǔ)知識面更寬 需要有一定的實(shí)踐經(jīng)驗(yàn) 工程定量計(jì)算的計(jì)量單位我國計(jì)量管理規(guī)定一律采用國際單位制 SI 國內(nèi)有些產(chǎn)品銘牌數(shù)據(jù)仍沿用工程單位制 在計(jì)算時(shí)應(yīng)統(tǒng)一換算成國際單位制 伺服系統(tǒng)典型負(fù)載分析和計(jì)算 明確了系統(tǒng)技術(shù)指標(biāo)后 研究被控對象的運(yùn)動學(xué) 動力學(xué)特性 根據(jù)對象的具體特點(diǎn)和受載情況選擇執(zhí)行元件 掌握了一般性研究方法后 需對負(fù)載作定量分析 根據(jù)對象的實(shí)際運(yùn)動規(guī)律來建立負(fù)載和干擾模型 一 系統(tǒng)典型負(fù)載分析 隨動系統(tǒng)和調(diào)速系統(tǒng)一般來說都是由執(zhí)行電動機(jī) 或液壓 氣動馬達(dá) 帶動被控對象做機(jī)械運(yùn)動 其控制特性與被控對象相聯(lián)系的動力學(xué)特性關(guān)系極大 被控對象能否達(dá)到預(yù)期的運(yùn)動狀況 完全取決于系統(tǒng)的穩(wěn)態(tài)和動態(tài)性能 系統(tǒng)常見的負(fù)載類型有 摩擦負(fù)載 慣性負(fù)載 阻尼負(fù)載 重力負(fù)載 彈性負(fù)載以及流體動力負(fù)載等 前兩項(xiàng)幾乎任一系統(tǒng)均有 1 摩擦負(fù)載 在任何機(jī)械傳動系統(tǒng)中 每一對相對運(yùn)動物體的接觸表面之間都存在著摩擦 普通的現(xiàn)象 情況卻十分復(fù)雜 在工程設(shè)計(jì)中 多采取實(shí)測的辦法 或采用手冊提供的數(shù)據(jù)做近似地估算 從接觸表面的相對運(yùn)動形式看 有滑動摩擦與滾動摩擦 在條件相同的情況下 滾動摩擦力比滑動摩擦力小 以接觸表面之間的潤滑條件來看 有干摩擦 粘性摩擦 或稱濕摩擦 和介于兩者之間的邊界摩擦 俗稱半干摩擦 在條件相同情況下 干摩擦最大 粘性摩擦小 半干摩擦力介于兩者之間 摩擦力 Fc f N 摩擦系數(shù)f與法向壓力 接觸表面特性 粗糙度 溫度 滑動速度 接觸時(shí)間等均有關(guān) 輸出軸上承受的摩擦力矩是由系統(tǒng)整個(gè)機(jī)械傳動各部分的摩擦作用綜合的結(jié)果 以旋轉(zhuǎn)運(yùn)動為例 靜摩擦力矩最大 隨著輸出角速度 的增加 0 1 時(shí) 摩擦力矩又略有增加或保持不變 摩擦負(fù)載對系統(tǒng)的工作品質(zhì)影響很大 對隨動系統(tǒng)而言 摩擦負(fù)載影響系統(tǒng)的控制精度 當(dāng)要求低速跟蹤時(shí) 由于摩擦負(fù)載在低速區(qū)有dMc d 0 系統(tǒng)將出現(xiàn)的低速爬行現(xiàn)象 2 慣性負(fù)載 物體作變速運(yùn)動時(shí)便有慣性負(fù)載產(chǎn)生 當(dāng)執(zhí)行元件帶動被控對象沿直線作變速運(yùn)動時(shí) 被控對象存在有慣性力FL FL m dv dt 式中 m為被控對象質(zhì)量 v為運(yùn)動速度 負(fù)號表示慣性力FL的方向始終阻止速度變化 當(dāng)系統(tǒng)所帶的被控對象作旋轉(zhuǎn)運(yùn)動時(shí) 被控對象形成的慣性負(fù)載轉(zhuǎn)矩為 ML JL d dt 式中 ML為慣性負(fù)載轉(zhuǎn)矩 JL為被控對象繞其轉(zhuǎn)軸的轉(zhuǎn)動慣量 為其角速度 JL m為質(zhì)點(diǎn)質(zhì)量 r為繞軸半徑 具有簡單幾何形狀的質(zhì)量均勻分布的物體轉(zhuǎn)動慣量表達(dá)式列入34頁表3 2中 圖形較為復(fù)雜的對象可用簡單形狀組合而成 流體中作變速運(yùn)動時(shí) 除自身的慣性力和慣性力矩以外 還有部分有水引起的附加質(zhì)量 或附加質(zhì)量慣量 3 阻尼負(fù)載當(dāng)被控對象在流體中運(yùn)動時(shí) 除了形成一定的附加質(zhì)量慣量 或附加質(zhì)量轉(zhuǎn)動慣量 以外 還會產(chǎn)生一個(gè)由于流體摩擦 興波等原因而造成的阻力 或阻力矩 這個(gè)力 或力矩 與物體運(yùn)動的速度 速度的平方甚至更高次方成比例 在相對運(yùn)動速度不高情況下 可以認(rèn)為阻尼力 或力矩 與運(yùn)動速度 或角速度 成比例 Fv b v M 2N Fv為阻尼力 b為阻尼系數(shù) v為對象在流體中的運(yùn)動速度 M 為阻尼力矩 2N為阻尼力矩系數(shù) 或阻尼系數(shù) 在分析船在水中運(yùn)動或者類似舵 鰭等伸出船外的裝置在水中轉(zhuǎn)動時(shí) 會用到阻尼力 力矩 和附加水質(zhì)量 或轉(zhuǎn)動慣量 有時(shí)在減速箱中為保持良好潤滑而注入一些潤滑油也會產(chǎn)生阻尼力 力矩 綜合以上情況 可以用一個(gè)通式來表示負(fù)載力矩 即F Fcsig v bv m dv dt M Mcsig 2N J d dt 式中的b和2N根據(jù)運(yùn)動存在的介質(zhì) 可以是某個(gè)常數(shù) 在流體中 也可以是零 在空氣中 4 其他工作阻力負(fù)載 除了上述三項(xiàng)由對象自身運(yùn)動而產(chǎn)生的負(fù)載力 力矩 之外 有些運(yùn)動對象還會受到正常工作要克服的阻力 力矩 例如 切削機(jī)床的切削力 力矩 升降機(jī)在上升時(shí)要克服重力 船舶減搖鰭在轉(zhuǎn)動時(shí)要克服由于重心與轉(zhuǎn)軸不一致導(dǎo)致的重力力矩和由于浮力中心和軸線不一致而造成的浮力不平衡力矩 雷達(dá)天線在運(yùn)動時(shí)要克服風(fēng)載阻力矩 二 典型系統(tǒng)的綜合負(fù)載分析和計(jì)算 實(shí)際伺服系統(tǒng)控制被控對象運(yùn)動過程中 都要克服多種負(fù)載的影響 因而需要根據(jù)各自的運(yùn)動規(guī)律做具體分析和綜合 我們在建立系統(tǒng)動力學(xué)方程以及在選擇執(zhí)行元件功率時(shí) 需要把對象所受到的負(fù)載換算到執(zhí)行元件輸出軸上 1 負(fù)載的傳遞和轉(zhuǎn)化 一般高速運(yùn)動的執(zhí)行元件帶動相對低速運(yùn)動的被控對象都需用減速裝置 三級齒輪減速器負(fù)載的傳遞與轉(zhuǎn)化 電機(jī)經(jīng)過三級齒輪減速而帶動負(fù)載 Z11 Z12 代表各級齒輪齒數(shù) 電機(jī)至負(fù)載的總速比為i 2 負(fù)載的綜合特性例1 龍門刨床工作臺控制系統(tǒng)負(fù)載分析與綜合設(shè)R為與工作臺齒條相嚙合的齒輪節(jié) 圓半徑i為電機(jī)與該齒輪之間傳動鏈的總速比 為總效率 例2 火炮方位隨動系統(tǒng)分析與綜合 火炮跟蹤等速直線飛行目標(biāo)的運(yùn)動規(guī)律如下 當(dāng)系統(tǒng)跟蹤目標(biāo)時(shí) 角速度dA dt始終為正值 故摩擦力矩Mc可視為常值 設(shè)運(yùn)動部分轉(zhuǎn)動慣量不變 慣性力矩Mj應(yīng)與的規(guī)律一致 若在跟蹤過程中對目標(biāo)進(jìn)行射擊 則會有沖擊力矩Ms作用在執(zhí)行軸上 系統(tǒng)承受的總的負(fù)載力矩t1時(shí)刻M 出現(xiàn)的脈沖為迭加了沖擊力矩Ms所致 例3減搖鰭轉(zhuǎn)鰭力矩分析與綜合船舶減搖鰭在船舷外的空間位置示意圖 鰭在與平行迎面來流之間的攻角為 由于鰭上方的水流受擠而流線變密 導(dǎo)致流速增加 鰭下方流速減小 鰭上方的靜壓小于下方的靜壓 兩者的壓差如圖中排線箭頭形成的包絡(luò)線 總的合力作用點(diǎn)為P 合力為R R可以分解為升力Y和阻力X 升力Y對船重心形成扶正力矩 合力對軸線O形成一力矩M01 此時(shí)如果鰭首向上轉(zhuǎn)動 則M01將阻礙鰭轉(zhuǎn)動 當(dāng)鰭角做一般性的運(yùn)動時(shí) 流體動力形成的力矩為式中M01為定常流體動力力矩 因?yàn)轹捿S不在首部 故呈非平衡狀態(tài) M01 Cm1 Cm1是用實(shí)驗(yàn)方法獲得的與攻角有關(guān)系數(shù) M02為非定常力矩 它與攻角角速度和攻角有關(guān) 計(jì)算Cm2比較復(fù)雜 需根據(jù)一定的圖譜公式 然后再假定鰭角做某種規(guī)律的運(yùn)動 一般假定 sin t 這樣才能知道與的對應(yīng)關(guān)系得Cm2 一般 等于1 3 2倍的船的諧搖頻率 M03是一項(xiàng)與加速度有關(guān)的慣性力矩 它是由鰭自身的轉(zhuǎn)動慣量和附加水質(zhì)量慣量引起的慣性力矩 式中的J是鰭 鰭軸和做搖擺運(yùn)動的連動部分總的轉(zhuǎn)動慣量 J是附加水質(zhì)量轉(zhuǎn)動慣量 Mc是摩擦力矩 由于有防止?jié)B漏的密封裝置 摩擦力矩比一般的傳動要大 通過實(shí)船實(shí)驗(yàn)表明 Mc約占總力矩的10 20 M 01是由重力不通過軸線和浮力不通過軸線引起的不平衡力矩 按鰭的幾何形狀和空間布置可算出 三 隨機(jī)干擾負(fù)載模型 控制系統(tǒng)常常遇到非確定的隨機(jī)干擾負(fù)載 需要根據(jù)實(shí)際情況來建立隨機(jī)干擾負(fù)載模型 干擾負(fù)載的譜密度函數(shù) 例4雷達(dá)天線隨動系統(tǒng)的風(fēng)載模型 考慮隨機(jī)信息 例如風(fēng)速 陀螺漂移等 的值是躍變的 每一區(qū)段值與以前區(qū)段值無關(guān) 而且躍變時(shí)刻t1 t2 t3 是隨機(jī)的 先求這類信號的相關(guān)函數(shù) 相關(guān)函數(shù)是相距為 時(shí)刻的兩個(gè)函數(shù)值的乘積的平均值 當(dāng)x t 和x t 處在同一區(qū)段時(shí)x t x t 而當(dāng)x t 和x t 處于不同區(qū)段時(shí) 有x t x t 設(shè)t和t 在同一區(qū)段的概率為Q 則相關(guān)函數(shù)可表示為R 為信號在 時(shí)間間隔內(nèi)不變的概率 設(shè) 是信號在單位時(shí)間內(nèi)的平均變化次數(shù) 在 t足夠小時(shí) 在 t內(nèi)變化的概率就是 t 而不變化的概率是1 t 將 0 分為成r個(gè) t 第一個(gè) t內(nèi)不變的概率為 1 t 第一個(gè) t和第二個(gè) t均不變的概率為 1 t 2 在r個(gè) t內(nèi)均為不變的概率是 1 t r 以 t代替r 并令 t 0 得 信號在 0 內(nèi)不變的概率 即從上式可以看到 這類譜密度函數(shù)的主要參數(shù)是均方值和單位時(shí)間內(nèi)變化次數(shù) 這兩個(gè)參數(shù)一般可以根據(jù)物理過程來近似得到 就雷達(dá)天線的風(fēng)載而言 可以先估算風(fēng)載力矩均方值 再根據(jù)當(dāng)?shù)仫L(fēng)速在單位時(shí)間內(nèi)變化的次數(shù)確定 有了這兩個(gè)參數(shù) 就可以確定風(fēng)載譜密度了 舉例說明 設(shè)有直徑為6m的天線 已知平均風(fēng)速V0 72km h 陣風(fēng)最大風(fēng)速Vm 96km h 0 11 1 s 天線上的風(fēng)載力矩為 例5斜浪航行時(shí)的橫搖干擾模型 假設(shè) 波浪是一維平穩(wěn)隨機(jī)過程 也就是其譜密度是單參數(shù)譜船舶傍浪航行時(shí)波浪對船舶的橫搖干擾模型為K 是考慮船的寬度和吃水深度對波浪來說并不是一個(gè)點(diǎn)而引起的修正系數(shù) 為波傾角 波傾角是波動方程 X t 對坐標(biāo)X的導(dǎo)數(shù) 相當(dāng)于船所在波面位置處波面和水平面的夾角 S 為海浪波幅譜密度 航向與浪向的夾角 參考方向 相對為0 斜浪航行時(shí) 航速會影響船與波浪的遭遇頻率 逆斜浪使船與波浪遭遇周期變短 順斜浪則其變長 斜浪航行時(shí)波傾角與傍浪航行是不一致的 這兩種因素都使橫搖干擾力矩模型變化 浪向角為 逆斜浪航行的情況 波峰相對于船的傳播速度為 絕對坐標(biāo)系里的海浪波幅譜密度是S 相對坐標(biāo)系里波幅譜密度是S e 波能譜從S 到S e 總能量并沒有變化 對應(yīng)d 和d e區(qū)間的能量相等 即S d S e d e因?yàn)橛?考慮斜浪航行時(shí)波傾角的變化 斜浪航行時(shí) 相對波長已不是 而是 此時(shí)對應(yīng)橫剖面的波傾角 u sin 式中 為傍浪時(shí)的波傾角 當(dāng)考慮以上所討論的兩種因素后 船在斜浪航行時(shí)的橫搖干擾力矩模型是斜浪時(shí)波傾角幅度變化僅僅在船的長度相對于波長是很小的情況下才有意義 當(dāng)船長與波長相接近時(shí) 沿船長不同的橫剖面上波傾角不僅在大小而且在符號上也發(fā)生了變化 伺服系統(tǒng)控制方案選擇 一 控制方案的選擇 伺服系統(tǒng)的都是為某一具體的控制對象服務(wù)的 因而必須按照對象的特點(diǎn)和需要 制訂方案 以作為依據(jù) 系統(tǒng)控制方案的選擇要考慮系統(tǒng)的性能指標(biāo)要求 元件的資源和經(jīng)濟(jì)性 工作的可靠性和使用壽命 可操作性能和可維護(hù)性能 方案分類直流 交流 交直流混合和數(shù)字控制等方案 單回路和多回路方案 線性控制和非線性控制方案 前饋控制和補(bǔ)償控制 亦稱復(fù)合控制等 連續(xù)控制和離散控制混合系統(tǒng)是一個(gè)重要技術(shù)發(fā)展方向 方案的比較1 直流 交流與混合控制方案比較 2 單回路 雙回路和多路比較單回路容易實(shí)現(xiàn) 結(jié)構(gòu)簡單 但性能上有缺陷 對系統(tǒng)參數(shù)變化比較敏感 系統(tǒng)開環(huán)特性G s Gc s G0 s 都在前向通道內(nèi) 因此Gc s 和G0 s 的參數(shù)變化將全部反映在閉環(huán)傳遞函數(shù)的變化中 抑制干擾能力差 存在干擾作用時(shí) 系統(tǒng)輸出對干擾作用N s 和N2 s 的傳遞函數(shù)分別為 對于二階系統(tǒng) 在一定頻率范圍內(nèi) 1 s 1 系統(tǒng)對于擾動N s 比沒有反饋時(shí)要差 因此 單回路控制系統(tǒng)難于抑制干擾作用的影響 在單回路系統(tǒng)中 如果系統(tǒng)的指標(biāo)要求較高 系統(tǒng)的增益應(yīng)當(dāng)較大 則系統(tǒng)通過串聯(lián)校正很可能難以實(shí)現(xiàn) 必須改變系統(tǒng)結(jié)構(gòu) 單回路控制系統(tǒng)只適用于被控對象比較簡單 性能指示要求不很高的情況 在要求較高的控制系統(tǒng)中 一般采用雙回路和多回路結(jié)構(gòu) 雙回路控制系統(tǒng)對輸入和干擾的傳遞函數(shù)分別為 可以選擇串聯(lián)校正裝置Gc1 s 和并聯(lián)校正裝置Gc2 s 來滿足對R s 和N s 的指標(biāo)要求 由于有了局部反饋 可以充分抑制N s 的干擾作用 而且當(dāng)部件G2 s 的參數(shù)變化很大時(shí) 局部閉環(huán)可以削弱它的影響 一般局部閉環(huán)是引入速度反饋 它還可改善系統(tǒng)的低速性能和動態(tài)品質(zhì) 選擇局部閉環(huán)的原則如下 一方面要包圍干擾作用點(diǎn)及參數(shù)變化較大的環(huán)節(jié) 同時(shí)又不要使局部閉環(huán)的階次過高 一般不高于三階 3 復(fù)合控制反饋控制是按照被控參數(shù)的偏差進(jìn)行控制的 只有當(dāng)被控參數(shù)發(fā)生變化時(shí) 才能形成偏差 從而才有控制作用 復(fù)合控制則是在偏差出現(xiàn)以前 就產(chǎn)生控制作用 屬于開環(huán)控制方式 前饋控制又叫順饋控制或開環(huán)補(bǔ)償 引入前饋控制的目的之一是補(bǔ)償系統(tǒng)在跟蹤過程中產(chǎn)生的速度誤差 加速度誤差等 補(bǔ)償控制是對外界干擾進(jìn)行補(bǔ)償 當(dāng)外界干擾可量測時(shí) 通過補(bǔ)償網(wǎng)絡(luò) 引入補(bǔ)償信號可以抵消干擾作用對輸出的影響 對干擾實(shí)現(xiàn)了完全的不變性 二 選擇方案的注意事項(xiàng) 選擇方案最基本的依據(jù)就是用戶對系統(tǒng)的主要技術(shù)要求 針對不同的使用環(huán)境 選擇方案的出發(fā)點(diǎn)就不同 軍用伺服系統(tǒng) 工作品質(zhì) 可靠性和靈活性 民用伺服系統(tǒng) 長期運(yùn)行的經(jīng)濟(jì)性 系統(tǒng)運(yùn)行速度很高 且經(jīng)常處于加速度狀態(tài) 對精度的要求高時(shí) 可以設(shè)計(jì)二階無差度系統(tǒng)或者采用復(fù)合控制系統(tǒng) 負(fù)載調(diào)速范圍很寬時(shí) 一般選無槽電動機(jī) 高性能系統(tǒng)中 一般選大慣量寬調(diào)速伺服電動機(jī) 采用直接耦合傳動方案 考慮電磁兼容性要求 選擇方案應(yīng)根據(jù)系統(tǒng)的主要要求 初步擬定方案 進(jìn)行可行性分析 試驗(yàn) 進(jìn)一步補(bǔ)充和完善 有時(shí)需要構(gòu)思幾個(gè)方案進(jìn)行對比 優(yōu)化 方案確定后便可按照設(shè)計(jì)步驟逐項(xiàng)進(jìn)行 并在試驗(yàn)中作局部修改 伺服系統(tǒng)的執(zhí)行元件 可采用電動機(jī) 液壓泵和液壓馬達(dá) 氣動設(shè)備 電磁離合器等 對執(zhí)行電機(jī)的要求如下 1 滿足負(fù)載運(yùn)動的要求 提供足夠的力矩和功率 2 正反轉(zhuǎn) 起停 保證系統(tǒng)的快速運(yùn)動 3 調(diào)速范圍 4 功率消耗 尺寸要求確定電機(jī)類型 額定輸入輸出參數(shù)額定電壓UR 額定電流IR 額定功率PR 額定轉(zhuǎn)速nR控制方式電機(jī)到負(fù)載之間傳動裝置的類型 速比 傳動級數(shù)和速比分配 估算傳動裝置的轉(zhuǎn)動慣量和傳動效率 一 伺服電動機(jī)的類型 直流伺服電動機(jī) 低速大扭矩寬調(diào)速電機(jī) 兩相異步電機(jī) 三相異步電機(jī) 同步電機(jī) 滑差電機(jī) 力矩電機(jī)和步進(jìn)電機(jī) 1 直流伺服電動機(jī) 直流伺服電動機(jī)按勵(lì)磁方式分 他激 串激 并激 控制方式分電樞控制和磁場控制兩大類 電樞控制易獲得較平直的機(jī)械特性 有較寬的調(diào)速范圍 功率范圍幾百瓦至幾十千瓦 磁場控制分電樞電壓保持不變和電樞電流保持不變兩種 電樞電壓為常值 功率在幾百瓦電機(jī) 具有弱磁升速特性 在幾十瓦以內(nèi) 且負(fù)載力矩MR較大 負(fù)載特性處于機(jī)械特性匯交點(diǎn)的右邊 可以實(shí)現(xiàn)弱磁降速 激磁電流IR近似與轉(zhuǎn)速成正比 可用于可逆連續(xù)調(diào)速場合 調(diào)速范圍和調(diào)節(jié)特性的線性度均遠(yuǎn)不如電樞控制 電樞電流保持不變的磁場控制 只能用于幾瓦至十幾瓦的小功率電機(jī) 只有加較深的速度負(fù)反饋系統(tǒng)才可獲得穩(wěn)定的轉(zhuǎn)速 在只有輸出力矩 轉(zhuǎn)速可以為零 的場合比較適用 直流他激伺服電動機(jī)的轉(zhuǎn)矩 慣量比是很小的 已不能適應(yīng)現(xiàn)代伺服控制技術(shù)要求 兩種高性能的小慣量高速直流伺服電動機(jī) 1 小慣量無槽電樞直流伺服電動機(jī)無槽電樞直流伺服電動機(jī)又稱表面繞組電樞直流伺服電動機(jī) 結(jié)構(gòu)不同之處在于電樞的鐵心表面無槽 電樞繞組與鐵心成為一個(gè)堅(jiān)實(shí)的整體 電樞繞組均勻分布在鐵心表面上 大大縮小了電樞直徑 減小了轉(zhuǎn)子的轉(zhuǎn)動慣量 換向性能改善 過載能力加強(qiáng) 改善低速平穩(wěn)性 擴(kuò)大了調(diào)速范圍 具有以下優(yōu)點(diǎn) 轉(zhuǎn)子轉(zhuǎn)動慣量小 普通電機(jī)1 10 電磁時(shí)間常數(shù)小 反應(yīng)快轉(zhuǎn)矩 慣量比大 過載能力強(qiáng) 最大轉(zhuǎn)矩比額定轉(zhuǎn)矩大10倍低速性能好 轉(zhuǎn)矩波動小 線性度好 摩擦小 調(diào)整范圍可達(dá)數(shù)千比一 具有以下缺點(diǎn) 轉(zhuǎn)速高 作為伺服系統(tǒng)的執(zhí)行電動機(jī)仍需減速器氣隙大 安匝數(shù)多 效率低 慣量小 熱容量較小 過載時(shí)間不能太長 由于電機(jī)本身轉(zhuǎn)動慣量小 負(fù)載轉(zhuǎn)動慣量可能要占系統(tǒng)總慣量中較大成份 負(fù)載轉(zhuǎn)慣量發(fā)生變化時(shí) 影響系統(tǒng)的動態(tài)性能 慣量匹配問題 無槽電樞直流伺服電動機(jī)是一種大功率直流伺服電動機(jī) 主要用于需要快速動作 功率較大的伺服系統(tǒng)中 如雷達(dá)天線的驅(qū)動 自行火炮 導(dǎo)彈發(fā)射架驅(qū)動 計(jì)算機(jī)外圍設(shè)備以及數(shù)控機(jī)床等方面都有應(yīng)用實(shí)例 2 空心杯電樞直流伺服電動機(jī)空心杯電樞直流伺服電動機(jī)是一種轉(zhuǎn)動慣量更小的直流伺服電動機(jī) 為 超低慣量伺服電動機(jī) 低轉(zhuǎn)動慣量 起動時(shí)間常數(shù)可達(dá)1ms以下 轉(zhuǎn)矩 轉(zhuǎn)動慣量比很大 角加速度可達(dá)106rad s 2 靈敏度高 快速性好 速度調(diào)節(jié)方便 始動電壓在100mV以下?lián)p耗小 效率高 效率可達(dá)80 或更高 繞組均勻分布 無齒槽效應(yīng) 轉(zhuǎn)矩波動小 低速平穩(wěn) 噪聲小繞組的散然條件好 其電流密度可取到30A mm 轉(zhuǎn)子無鐵心 電樞電感很小 換向性能很好 提高使用壽命 空心杯形電樞直流伺服電動機(jī)輸出功率從零點(diǎn)幾瓦到幾千瓦 多用于高精度的伺服系統(tǒng)及測量裝置等設(shè)備中 如電視攝像機(jī) 各種錄單機(jī) X Y函數(shù)記錄儀 數(shù)控機(jī)床等機(jī)電一化設(shè)備中 2 低速大扭矩寬調(diào)速電動機(jī) 低速大扭矩寬調(diào)速電動機(jī)是在過去軍用低速力矩電動機(jī)經(jīng)驗(yàn)的基礎(chǔ)上發(fā)展起來的一種新型電動機(jī) 相對于前面的小慣量電動機(jī)而言 大扭矩寬調(diào)速電動機(jī)具有下列特點(diǎn) 高轉(zhuǎn)矩 轉(zhuǎn)動慣量比 從而提供了極高的加速度和快速響應(yīng)高熱容量 使電機(jī)在自然冷卻全封閉條件下 仍能長時(shí)間過載電機(jī)具有高轉(zhuǎn)矩和低速特性使得它可與對象直接耦合電動機(jī)在大的加速度和過載情況下 有良好的換向 電動機(jī)具有足夠的機(jī)械強(qiáng)度 保證有長的壽命和高的可靠性 采用能承受重載荷的軸和軸承 使得電動機(jī)在加 減速和低速大轉(zhuǎn)矩時(shí)能承受最大峰值轉(zhuǎn)矩 電動機(jī)內(nèi)安裝有高精度和高可靠性的反饋元件 脈沖編碼器或多極旋轉(zhuǎn)變壓器和低紋波測速發(fā)電機(jī) 3 兩相異步電動機(jī) 兩相異步電動機(jī)在幾十瓦以內(nèi)的小功率隨動系統(tǒng)和調(diào)速系統(tǒng)中被廣泛應(yīng)用 控制方式分幅值控制和相位控制 兩相異步電動機(jī)具有較寬的調(diào)速范圍 本身摩擦力矩小 比較靈敏 具有杯型轉(zhuǎn)子的兩相異步機(jī)轉(zhuǎn)動慣量小 因而快速響應(yīng)特性好 常見于儀表隨動系統(tǒng)中 4 三相異步電動機(jī) 三相異步電動機(jī)控制方式有多種 如變頻調(diào)速 變電壓調(diào)速 串級調(diào)速 脈沖調(diào)速等 變頻調(diào)速可獲得比較平直的機(jī)械特性 調(diào)速范圍比較寬但控制線路復(fù)雜 該調(diào)速方法目前已得到廣泛應(yīng)用 工業(yè)中傳統(tǒng)使用的是利用可控硅實(shí)現(xiàn)變壓調(diào)速和串級調(diào)速 它只適用于線繞式轉(zhuǎn)子的異步電動機(jī) 變壓調(diào)速和串級調(diào)速均在單向調(diào)速時(shí)采用 低速性能差且調(diào)速范圍不寬 與同功率的直流電機(jī)相比 三相異步電機(jī)的體積小 重量輕 價(jià)格便宜 維護(hù)簡單 5 滑差電機(jī) 亦稱轉(zhuǎn)差離合器 滑差電機(jī)的主動部分由原動機(jī)帶動作單向等速運(yùn)轉(zhuǎn) 用直流控制它的激磁 激磁電流大小可調(diào)節(jié)其從動部分的轉(zhuǎn)速 從動部分帶動負(fù)載追隨主動部分 故只能單方向調(diào)速 其機(jī)械特性較軟 調(diào)速范圍不大 低速性能較差 但控制線路簡單 6 步進(jìn)電機(jī) 按激磁方式分永磁式 感應(yīng)式和反應(yīng)式 其中反應(yīng)式結(jié)構(gòu)簡單 用得較為普遍 目前工業(yè)上多用于小功率場合 步進(jìn)電機(jī)特別適合于增量控制 在機(jī)床進(jìn)刀系統(tǒng)中廣泛采用 7 力矩電機(jī) 力矩電機(jī)分直流和交流兩種 它在原理上與他激直流電機(jī)和兩相異步電機(jī)一樣 只是在結(jié)構(gòu)和性能上有所不同 比較適合于低速調(diào)速系統(tǒng) 甚至可長期工作于堵轉(zhuǎn)狀態(tài)只輸出力矩 因此它可以直接與控制對象相聯(lián)而不需減速裝置 8 直流無刷電動機(jī) 直流電動機(jī)的優(yōu)點(diǎn)是機(jī)械特性和調(diào)節(jié)特性的線性度好 堵轉(zhuǎn)轉(zhuǎn)矩大 力矩電機(jī) 控制方法簡單 其缺點(diǎn)是有換向器和電刷 兩相伺服電動機(jī)的優(yōu)點(diǎn)是沒有換向器和電刷 缺點(diǎn)是機(jī)械特性和調(diào)節(jié)特性具有嚴(yán)重的非線性 轉(zhuǎn)矩小 效率低 兩者的結(jié)合 在現(xiàn)今已得以實(shí)現(xiàn) 這種電動機(jī)用電子換向開關(guān)電路和位置傳感器代替電刷和換向器 這使直流無刷電動機(jī)既具有直流電動機(jī)的機(jī)械特性 調(diào)節(jié)特性 又具有交流電動機(jī)的維護(hù)方便 運(yùn)行可靠 沒有電磁干擾等優(yōu)點(diǎn) 缺點(diǎn)是 結(jié)構(gòu)比較復(fù)雜 包括電子換向器在內(nèi)的體積較大 轉(zhuǎn)矩波動大 低速時(shí)轉(zhuǎn)速的均勻性差 控制用無刷直流電動機(jī)包括無刷直流伺服電動機(jī)和無刷直流力矩電動機(jī) 二 伺服電動機(jī)的選擇1 基本依據(jù) 1 典型負(fù)載干摩擦力矩Mc Mcsign Nm 慣性力矩ML J J d dt Nm 粘性摩擦力矩M 2N Nm 重力力矩MG GL Nm 彈性力矩MK K Nm 風(fēng)阻力矩Mf f Nm 2 描述與定量分析典型負(fù)載與其運(yùn)動參數(shù) 有關(guān) 若對象運(yùn)動有規(guī)律 則可用簡單數(shù)學(xué)形式來描述 多數(shù)被控對象的運(yùn)動形態(tài)是隨記得 工程采用近似方法 選取有代表性的工況作定量分析 長期運(yùn)行電機(jī)發(fā)熱狀態(tài)短時(shí)超載系統(tǒng)極限運(yùn)動的承載能力根據(jù)動態(tài)性能要求檢驗(yàn)電機(jī)的響應(yīng)能力被控對象運(yùn)動與電機(jī)運(yùn)動是同時(shí)進(jìn)行的 既要克服對象的負(fù)載 也要克服電機(jī)自身的負(fù)載 3 銘牌定量計(jì)算方法產(chǎn)品單位要用國際單位統(tǒng)一 a 力矩電機(jī)產(chǎn)品參數(shù) 以LY系列永磁力矩電機(jī)目錄為例輸出參數(shù) 峰值堵轉(zhuǎn)力矩Mmbl 最大空載轉(zhuǎn)速nm0 對應(yīng)Um的實(shí)際空載轉(zhuǎn)速 連續(xù)堵轉(zhuǎn)力矩Mcbl 輸入?yún)?shù) 峰值堵轉(zhuǎn)電流Imbl 峰值堵轉(zhuǎn)電壓Um 連續(xù)堵轉(zhuǎn)電流Icbl和電壓Uc 電機(jī)參數(shù) 電勢系數(shù)Ce 轉(zhuǎn)子轉(zhuǎn)動慣量Jr 電磁時(shí)間常數(shù)Ti 計(jì)算公式 b 直流伺服電機(jī)輸出參數(shù) 額定轉(zhuǎn)矩MR 額定轉(zhuǎn)速nR 額定功率PR 輸入?yún)?shù) 電樞電流IR 電樞電壓UR 激磁電流If和電壓Uf 電機(jī)參數(shù) 電樞轉(zhuǎn)動慣量Jr 或轉(zhuǎn)子飛輪轉(zhuǎn)矩計(jì)算公式 c 兩相異步電機(jī)輸出參數(shù) 堵轉(zhuǎn)轉(zhuǎn)矩Mbl 空載轉(zhuǎn)速n0 額定輸出功率PR 輸入?yún)?shù) 頻率f 堵轉(zhuǎn)電流Ibl 額定控制電壓UR 激磁電壓Uf 每相輸入功率P 電機(jī)參數(shù) 電機(jī)時(shí)間常數(shù)Tm 極對數(shù)計(jì)算公式 2 單軸傳動執(zhí)行電機(jī)選擇電機(jī)與負(fù)載直接對接 無減速器 例1 探測器方位角跟蹤系統(tǒng) 例2小車在鋼軌上運(yùn)動 需要電機(jī)驅(qū)動 已知 小車滿載重量 G 500N 車輪半徑 R 0 2m軌跡滾動摩擦系數(shù) f 0 002要求 車速可逆 vm 1 2m s am 0 2m ss系統(tǒng)最大誤差 m 0 1m零初始狀態(tài) 1 t 作用 ts 3s 選電機(jī)直接驅(qū)動 解 1 轉(zhuǎn)換直線運(yùn)動轉(zhuǎn)換為旋轉(zhuǎn)運(yùn)動 2 選電機(jī)160LY55直接連接 參數(shù)如下 3 校驗(yàn)檢驗(yàn)發(fā)熱溫升沒有提出最大加速度要求 只在誤差范圍內(nèi)考慮 動態(tài)性能 帶寬 在不增大電機(jī)外徑的前提下 重新選電機(jī) 160LYX 3 多軸傳動執(zhí)行電機(jī)選擇 m L i 1 力矩關(guān)系 1 i 其中 1 選擇電機(jī) 根據(jù)運(yùn)動要求 選擇傳動比i的類型 估計(jì) 并折算到電機(jī)軸 0 92 0 96 圓柱齒輪或圓錐齒輪 0 980 70 0 80 齒條或蝸桿輪 0 75 0 820 50 0 60 螺母絲桿 一般傳動部分的轉(zhuǎn)動慣量 Jp 0 05 0 1 Jr Jr電機(jī)轉(zhuǎn)動慣量 電機(jī)功率小時(shí) 取0 1 功率大時(shí) 取0 05 進(jìn)行三個(gè)方面的驗(yàn)證 溫升發(fā)熱 短時(shí)極限承受力 動態(tài)頻帶溫升發(fā)熱驗(yàn)證 短時(shí)極限承受力驗(yàn)證 以極限角加速度 lim作為短時(shí)運(yùn)行 此時(shí)承受的轉(zhuǎn)矩M 用 過載系數(shù)來衡量 即短時(shí) t3s 超載Msup MR鼠籠式兩相異步電機(jī) 1 8 2空心杯兩相異步電機(jī) 1 1 1 4伺服三相異步電機(jī) 2直流伺服電機(jī) 3 直流力矩電機(jī)不能超過Mmbl驗(yàn)證標(biāo)準(zhǔn) M MR 對力矩電機(jī)M Mmbl動態(tài)頻帶驗(yàn)證 例3有一轉(zhuǎn)臺 設(shè)計(jì)水平向傳動 已知 解 1 單位換算 2 初選電機(jī) 初選直流伺服電機(jī)為ZK 32C 參數(shù)如下 輸出參數(shù) 額定轉(zhuǎn)速nR 2500r min 261 8rad s額定功率PR 760w 589 2w輸入?yún)?shù) 電樞電流IR 8 2A 電樞電壓UR 110V 電壓Uf 220V電機(jī)參數(shù) 轉(zhuǎn)子飛輪轉(zhuǎn)矩 0 053可得 電樞轉(zhuǎn)動慣量Jr 4 0 01325估算 傳動比傳動裝置采用三級圓柱齒輪和一級渦輪蝸桿傳動 總效率為 因?yàn)殡姍C(jī)功率小 取傳動轉(zhuǎn)動慣量Jp 0 1Jr 0 001325 3 驗(yàn)證溫升發(fā)熱驗(yàn)證 短時(shí)極限承受力驗(yàn)證 動態(tài)頻帶驗(yàn)證 例4小功率伺服系統(tǒng) 已知 解 1 單位換算 2 初選電機(jī) 選f 400Hz兩相異步電機(jī)70sL01 其參數(shù)如下 輸出參數(shù) 堵轉(zhuǎn)轉(zhuǎn)矩Mbl 1000gcm 0 098Nm空載轉(zhuǎn)速n0 4800r min 502 6rad s額定輸出功率PR 16w 9 54w輸入?yún)?shù) 頻率f 400Hz 額定控制電壓UC 115V激磁電壓Uf 115v 激磁電流If 1 1A電機(jī)參數(shù) 電機(jī)時(shí)間常數(shù)Tm 25ms 0 025s可求得 傳動比傳動裝置采用四級圓柱齒輪傳動 總效率為 取傳動轉(zhuǎn)動慣量Jp和測速發(fā)電機(jī)Jc折合到電機(jī)后 總轉(zhuǎn)動慣量為 3 驗(yàn)證溫升發(fā)熱驗(yàn)證 短時(shí)極限承受力驗(yàn)證 動態(tài)頻帶驗(yàn)證 伺服檢測裝置的選擇 在伺服系統(tǒng)中 測量裝置的作用是產(chǎn)生一個(gè)與被檢測量等效的電信號 如直流電流 直流電壓等 以控制系統(tǒng)工作 在信號的變化過程中 測量裝置會給伺服系統(tǒng)帶來誤差 測量裝置自身的精度或分辯率對整個(gè)伺服控制系統(tǒng)精度的關(guān)系很大 對測量裝置的主要要求 1 精度高 不靈敏區(qū)小 其誤差比整個(gè)系統(tǒng)允許誤差小得多 2 被測量與電輸出信號之間在給定工作范圍內(nèi)具有線性關(guān)系 3 要求輸出信號中所含干擾成分要小 4 輸出信號應(yīng)能在所要求的頻帶內(nèi)準(zhǔn)確地復(fù)現(xiàn)被測量 盡量避免儲能元件造成的動態(tài)滯后 5 機(jī)電測量裝置自身的轉(zhuǎn)動慣量要小 摩擦轉(zhuǎn)矩要小 6 測量裝置輸出的功率應(yīng)足夠高 以便能夠不失真地傳遞信號和作進(jìn)一步的信號處理 一 調(diào)速系統(tǒng)測量裝置的選擇 調(diào)速系統(tǒng)需要測速反饋 測量輸出角速度 并轉(zhuǎn)換為對應(yīng)的電壓信號 反饋回去與輸入信號進(jìn)行比較 要求測速元件低速輸出穩(wěn)定 紋波小 線性度好 模擬量測速元件 通常采用直流測速發(fā)電機(jī)數(shù)字式測速元件 采用光電式脈沖發(fā)生器 亦稱增量編碼器 介紹直流測速發(fā)電機(jī) 數(shù)字測速的原理和基本要求以及頻率 電壓 F V 變換器 1 模擬測速元件 直流測速發(fā)電機(jī)直流測速發(fā)電機(jī)的型式 永磁式 他勵(lì)式 伺服系統(tǒng)對直流測速發(fā)電機(jī)的要求a 輸出電壓和轉(zhuǎn)速的特性線性度要好 b 輸出特性的斜率要大 c 溫度變化對輸出特性的影響要小 d 輸出電壓的紋波要小 e 輸出特性的對稱性要一致 直流測速發(fā)電機(jī)的誤差因素理想的測速發(fā)電機(jī)其輸出電壓Ug與其轉(zhuǎn)軸的角速度 成正比Ug Kg 直流測速發(fā)電機(jī)的輸出信號Ug中 包含有紋波分量或無用信號Un rip t 稱為測速發(fā)電機(jī)的噪聲 它由以下的各種因素所引起 換向紋波是構(gòu)成測速發(fā)電機(jī)噪聲的主要部分 它由測速發(fā)電機(jī)電刷和換向器之間相對運(yùn)動引起的 在低速時(shí)影響尤為明顯 電樞偏心它產(chǎn)生周期性的有害信號 其基波頻率等于測速發(fā)電機(jī)的角頻率 頻率相對比較低 對系統(tǒng)是有害的 與換向紋波相比 通常是較小的 高頻噪聲對噪聲Un rip t 影響的第三個(gè)因素是高頻噪聲或稱 白噪聲 它主要的是電磁感應(yīng)引起的 因?yàn)樾盘栴l率較高 可以濾除掉 對系統(tǒng)影響不大 直流測速發(fā)電機(jī)反饋的速度伺服系統(tǒng)測量裝置的選擇Kr代表速度給定電位器的轉(zhuǎn)換系數(shù) 系統(tǒng)傳遞系數(shù)K為 測速發(fā)電機(jī)的線性關(guān)系低速時(shí)電動勢小 輸出有 死區(qū) 根據(jù)輸出斜率KF和電刷接觸壓降 Ud 可估算uf f 特性的不靈敏區(qū) dead ud KF 選擇時(shí) 應(yīng)使不靈敏區(qū) dead min選定以后 KF為已知值 可按穩(wěn)態(tài)要求求出需要的增益K值 一般K值比穩(wěn)態(tài)要求的要高一些 K確定后 當(dāng)系統(tǒng)輸出達(dá)到最大速度 max時(shí) 需要的最大輸入信號Ui max為Ui max KF max max K 系統(tǒng)可逆運(yùn)行時(shí) 給定電位器最大輸出電壓應(yīng)等于 Ui max 則電位器的電源電壓Ug Ui max 選擇給定電位器和測速發(fā)電機(jī)要注意負(fù)載能力 使負(fù)載引起的非線性效應(yīng)最小 2 數(shù)字測速元件 光電脈沖測速機(jī)數(shù)字測速元件是由光電脈沖發(fā)生器及檢測裝置組成 它們具有低慣量 低噪聲 高分辯率和高精度的優(yōu)點(diǎn) 脈沖發(fā)生器連接在被測軸上 隨著被測軸的轉(zhuǎn)動產(chǎn)生一系列的脈沖 檢測裝置對脈沖進(jìn)行比較 獲得被測軸的速度 有電磁式和光電式兩種 原理 增量式光電編碼器 基本要求高分辯率分辯率表征測量裝置對轉(zhuǎn)速變化的敏感度 當(dāng)測量數(shù)值改變 對應(yīng)轉(zhuǎn)速由n1變?yōu)閚2 則分辯率Q定義為Q n2 n1 r min Q值愈小 測量裝置對轉(zhuǎn)速變化愈敏感 亦即其分辯率愈高 高精度精度表示偏離實(shí)際值的百分比 即當(dāng)實(shí)際轉(zhuǎn)速為n 誤差為 n時(shí)的測速精度為e n n 100 影響測速精度的因素有 光電測速器的不同心度制造誤差和脈沖計(jì)數(shù)時(shí) 1個(gè)脈沖的誤差 短的檢測時(shí)間檢測時(shí)間 即兩次速度連續(xù)采樣的間隔時(shí)間T T愈短 愈有利于實(shí)現(xiàn)快速響應(yīng) 數(shù)字測速方法脈沖計(jì)數(shù)測量轉(zhuǎn)速方法有三種 M法 T法 M T法M法測速在規(guī)定的時(shí)間間隔Tg內(nèi) 測量所產(chǎn)生的脈沖數(shù)來獲得被測速度值 這種方法稱為M法 設(shè)脈沖發(fā)生器每轉(zhuǎn)一圈發(fā)出的脈沖數(shù)為P 且在規(guī)定的時(shí)間Tg 秒 內(nèi) 測得的脈沖數(shù)為m1 則電機(jī)每分鐘轉(zhuǎn)數(shù) nM 60m1 PTg r min 技術(shù)指標(biāo) Q值與轉(zhuǎn)速無關(guān) 計(jì)數(shù)值m1變化1 在任何轉(zhuǎn)速下所對應(yīng)的轉(zhuǎn)速值增量均等 轉(zhuǎn)速很小時(shí) Tg內(nèi)脈沖少 則測出的速度不準(zhǔn)確 欲提高分辯率 可提高P 或者增加Tg 測量精度測量過程有 1個(gè)脈沖的檢測誤差 則相對誤差為1 m1 轉(zhuǎn)速增加 m1增大 相對誤差減小 M法適用高速測量 檢測時(shí)間T Tg 60 PQ 在保持一定分辯率的情況下 縮短檢測時(shí)間唯一的辦法是改用P值大 轉(zhuǎn)盤刻線密度大或透光孔多 的光電脈沖發(fā)生器 T法測速測量相鄰兩個(gè)脈沖的時(shí)間來確定被測速度的方法叫做T法測速 方法 用一已知頻率fc的時(shí)鐘脈沖向一計(jì)數(shù)器發(fā)送脈沖 此計(jì)數(shù)器由測速脈沖的兩個(gè)相鄰脈沖控制其起始和終止 若該計(jì)數(shù)器的讀數(shù)為m2 則電機(jī)每分鐘的轉(zhuǎn)數(shù)為nM 60fc Pm2 r min T法測速的技術(shù)指標(biāo) 轉(zhuǎn)速nM升高 Q值增大 轉(zhuǎn)速愈低 Q值愈小 亦即T法測速在低速時(shí)有較高的分辯率 測速精度光電脈沖發(fā)生器制造誤差為ep 導(dǎo)致測速的絕對誤差隨著轉(zhuǎn)速的升高而增加 例如ep 10 當(dāng)nM 100r min nM 10r min 當(dāng)nM 1000r min nM 100r min 另外 時(shí)鐘脈沖m2計(jì)數(shù)時(shí) 總有一個(gè)脈沖的誤差 由此造成的相對誤差為1 m2 隨著轉(zhuǎn)速nM增加 m2計(jì)數(shù)值減小 此項(xiàng)誤差也隨之增大 T法在低速時(shí)有較高的精度和分辯率 適合于低速時(shí)測量 檢測時(shí)間T等于測速脈沖周期Ttach 即T Ttach 60 nMP 可見 隨著轉(zhuǎn)速的升高 檢測時(shí)間將減小 確定檢測時(shí)間的原則是 即要使T盡可能短 又要使計(jì)算機(jī)在電機(jī)最高速運(yùn)行時(shí)有足夠的時(shí)間對數(shù)據(jù)進(jìn)行處理 時(shí)鐘脈沖fc的確定fc愈高 分辯率愈高 測速精度愈高 但fc過高又使m2過大 使計(jì)數(shù)器字長加大 影響運(yùn)算速度 確定方法 根據(jù)最低轉(zhuǎn)速nM min和計(jì)算機(jī)字長設(shè)計(jì)出最大計(jì)數(shù)m2 max 有 fc nM minPm2 max 60 M T法測速同時(shí)測量檢測時(shí)間和此時(shí)間內(nèi)脈沖發(fā)生器發(fā)送的脈沖數(shù)來確定被測轉(zhuǎn)速 用規(guī)定時(shí)間間隔Tg以后的第一個(gè)測速脈沖去終止時(shí)鐘脈沖計(jì)數(shù)器 由計(jì)數(shù)器示數(shù)m2來確定檢測時(shí)間T 注意 上中的60fc P項(xiàng)是常數(shù) 在檢測時(shí)間T內(nèi) 分別計(jì)取測速脈沖ftach和時(shí)鐘脈沖fc的脈沖個(gè)數(shù)m1和m2 即可計(jì)算出電機(jī)轉(zhuǎn)速值 計(jì)取Tg時(shí)間內(nèi)的測速脈沖ftach的個(gè)數(shù)相當(dāng)于M法 而計(jì)取T時(shí)間內(nèi)參考時(shí)鐘脈沖fc的個(gè)數(shù)m2相當(dāng)于T法 所以該測速方法兼有M法和T法的優(yōu)點(diǎn) 在高速和低速段均可獲得較高分辯能力 性能指標(biāo) 分辯率由于Tg定時(shí)和m1計(jì)數(shù)同時(shí)開始 m1無誤差 由m2變化 1時(shí) 分辯率Q為 測速精度用eP 表示測速脈沖周期Ttach不均勻誤差 因該誤差不累積 計(jì)取m2時(shí)只在最后一個(gè)周期內(nèi)對m2產(chǎn)生影響 同時(shí)考慮m2可能產(chǎn)生 1的誤差 由此引起測速誤差etach 為參數(shù)選擇 時(shí)鐘脈沖頻率fc的選取測速規(guī)定時(shí)間Tg的選擇在性能指標(biāo)允許的條件下 盡可能選取小的Tg值 數(shù)字測速方法評價(jià) 對分辯率而言T法測速時(shí)較高 隨著速度的增大 分辯率變壞 M法則相反 高速時(shí)較高 隨著速度降低 分辯率變差 M T法的Q nM是常數(shù) 與速度無關(guān) 因此它比前兩種方法都好 從測速精度上看以M T法為佳 考慮檢測時(shí)間 在標(biāo)準(zhǔn)的M法中 T Tg 與速度無關(guān) 在T法中 因?yàn)槿y速脈沖的間隔時(shí)間Ttach作為檢測時(shí)間 因而 隨著速度的增大而減小 M T法檢測時(shí)間相對前兩種方法是較長的 但是若稍微犧牲一點(diǎn)分辯率 選擇分辯率在最低轉(zhuǎn)速時(shí)仍使m1 5 6個(gè)脈沖 便可使檢測時(shí)間幾乎與M法相同 T Tg 另外 速度控制系統(tǒng)的響應(yīng)決不僅僅是由檢測時(shí)間確定 還與功率轉(zhuǎn)換電路 電動機(jī)的特性以及負(fù)載情況有關(guān) 因此 檢測時(shí)間的選取 應(yīng)視具體系統(tǒng)的要求而定 但對快速響應(yīng)要求比較高的系統(tǒng)來說 檢測時(shí)間的影響是不容忽視的 光電脈沖測速檢測裝置的選擇允許忽略由采樣引起的相位移的條件是 tach min 10 帶寬 rad s 式中 tach min消除采樣數(shù)據(jù)相位移所允許的測速器頻率 在已知系統(tǒng)階躍輸入信號作用下的響應(yīng)時(shí)間ts情況下 系統(tǒng)開環(huán)截止頻率 c c 6 10 ts 近似求得 若把 c的值作為系統(tǒng)閉環(huán)的帶寬 則有 tach min 10 c光電測速器輸出信號的頻率為ftach Nn 60 N 2 N圓盤刻線密度 n轉(zhuǎn)速 可得 tach min Nnmin 30 有 N 300 c nmin 表示了帶寬 c 每分鐘最低轉(zhuǎn)速nmin及圓盤密度N三者之間極重要的輔助關(guān)系 它是選擇光電測速器的基本依據(jù) 二 隨動系統(tǒng)檢測裝置的選擇 位置控制系統(tǒng)測量裝置通常采用的有圓環(huán)形旋轉(zhuǎn)電位器 自整角機(jī) 同步機(jī) 旋轉(zhuǎn)變壓器 解算器 碼盤 感應(yīng)同步器 采用電位器作角度測量和角度同步傳輸是常用的一種方法 選用電位器測量角度或傳輸角度 有滑動接觸 容易造成磨損 而且可能出現(xiàn)溫差電動勢 影響測量精度 要求較高的系統(tǒng)中 多采用非接觸式的角度測量和傳輸裝置 自整角機(jī)和旋轉(zhuǎn)變壓器 略 放大裝置選擇 在大中功率系統(tǒng)中 廣泛應(yīng)用了直流發(fā)電機(jī) 交磁機(jī) 磁放大機(jī) 晶閘管放大器 液壓放大器等 在中小功率系統(tǒng)中 晶體管功率放大器得到廣泛應(yīng)用 晶體管功率放大器具有體積小 無噪聲 無慣性 使用方便等特點(diǎn) 一 基本要求及設(shè)計(jì)內(nèi)容 基本要求 放大裝置的功率輸出級必須與所選執(zhí)行電機(jī)相匹配 實(shí)現(xiàn)對控制信號的功率放大 必須輸出足夠的功率驅(qū)動執(zhí)行電機(jī) 電壓 電流 并滿足電機(jī)短時(shí)過載和超速運(yùn)行以及突然反向制動的工況 一般說來 功率放大器的電壓輸出幅值應(yīng)能達(dá)到電機(jī)額定電壓的1 2倍 中小型直流電機(jī) 起動電流是額定電流的2 5 5倍 功率放大器的輸出電流是電機(jī)額定電流的2 5 5倍 交流電機(jī) 由于其電流過載很小 只需考慮電壓有過載能力 放大裝置功率輸出級輸出阻抗要小 效率要高 在執(zhí)行元件是直流電機(jī)的情況下 放大器的輸出阻抗是電樞回路總電阻的一部分 如果放大器的輸出阻抗不能做得很小 則機(jī)電時(shí)間常數(shù)必然要加大 這就使得電機(jī)反應(yīng)速度變慢 因此 應(yīng)當(dāng)盡量減小功率放大器的輸出阻抗 一個(gè)有效的辦法是引入電壓負(fù)反饋 只要加大電壓負(fù)反饋的深度 就可以無限度地減小放大器的輸出阻抗 但實(shí)際上 由于放大器存在慣性 電壓負(fù)反饋過深 可能導(dǎo)致動態(tài)品質(zhì)變壞 因此 合適的負(fù)反饋深度以減小輸出阻抗 改善放大器的非線性 克服元件參數(shù)變化的影響 并改善動態(tài)品質(zhì) 功率放大裝置應(yīng)有足夠的線性范圍 功率放大器是末級放大 最可能出現(xiàn)飽和 過早地出現(xiàn)飽和 將使功率放大器等效內(nèi)阻增大 輸出特性變壞 等效時(shí)間常數(shù)增大 放大裝置的通頻帶至少應(yīng)是系統(tǒng)帶寬的5倍以上 功率放大器本身的頻帶應(yīng)大大高于系統(tǒng)的頻帶 使其時(shí)間常數(shù)成為小參數(shù) 否則將使系統(tǒng)的階數(shù)增高 影響系統(tǒng)的動態(tài)品質(zhì) 放大裝置的輸入級要和測量元件的輸出阻抗相匹配 放大裝置的不靈敏區(qū)比測量元件的失靈區(qū)要小 輸入級的精度要高 還要進(jìn)行溫漂的核算 放大裝置需根據(jù)不同的執(zhí)行元件有相應(yīng)保護(hù)措施 當(dāng)系統(tǒng)執(zhí)行電機(jī)為直流力矩電機(jī)或其它永磁式直流電機(jī)時(shí) 放大裝置輸出級應(yīng)有限流保護(hù)防止電流過載 放大裝置提供一定的制動條件以提高系統(tǒng)效率 對電機(jī)功率在500W以上 經(jīng)??赡孢\(yùn)行的系統(tǒng) 要求放大裝置輸出級能提供電機(jī)發(fā)電制動條件 以提高整個(gè)系統(tǒng)的效率 放大裝置的放大倍數(shù)確定及設(shè)計(jì)確定放大裝置的放大倍數(shù)可根據(jù)系統(tǒng)對靜差和穩(wěn)態(tài)跟蹤誤差的要求來進(jìn)行 用靜差來確定放大倍數(shù) 設(shè)系統(tǒng)允許的靜差為ej 測量元件的誤差為ec 則其余的靜差部分是其它的元件所產(chǎn)生 放大器應(yīng)在 ej ec 2的信號輸入下使輸出達(dá)到電機(jī)的額定電壓UMR 實(shí)際上 只需輸出一個(gè)電壓克服電機(jī)失靈區(qū)并能供給電機(jī)一定電壓去克服負(fù)載中的摩擦力矩即可 確定總放大倍數(shù)的上限值 即Kmax 2UMR ej ec 用等速跟蹤誤差ev來確定放大倍數(shù) 系統(tǒng)以最大角速度跟蹤輸入 這時(shí)允許的等速跟蹤誤差為ev 則放大裝置應(yīng)在誤差信號ev的輸入下 使輸出達(dá)到電機(jī)額定電壓UMR 這樣就確定了放大倍數(shù)的下限值 即Kmin UMR ev 放大倍數(shù)的分配要從后向前逐級提高 精度也從后向前逐級提高 并在第一級放大器留有動態(tài)校正的余地 查閱典型線路作為參考 進(jìn)行具體設(shè)計(jì) 要注意放大器使用對象的差異 必要時(shí)加保護(hù)電路 常用的小功率直流放大器有互補(bǔ)推挽式 橋式以及脈沖調(diào)寬式 即PWM 交流放大器有推挽式和互補(bǔ)推挽式 大功率電機(jī)的放大裝置有晶閘管功放和電機(jī)擴(kuò)大機(jī)等 它們與測量元件之間仍然要用集成運(yùn)算放大器相連 這樣不但能實(shí)現(xiàn)信息的傳遞 而且可方便地進(jìn)行動態(tài)校正和綜合 在設(shè)計(jì)放大裝置的同時(shí) 要把對電源 包括功率放大器所用的電源和信號放大所用的穩(wěn)壓電源的形式 交 直流 規(guī)格 電壓 電流 以及精度確定下來 用于選擇或設(shè)計(jì)電源- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 伺服系統(tǒng) 穩(wěn)態(tài) 設(shè)計(jì)
鏈接地址:http://m.appdesigncorp.com/p-5183612.html