2019-2020年高中數(shù)學(xué)《三角函數(shù)的應(yīng)用》教案1蘇教版必修4.doc
《2019-2020年高中數(shù)學(xué)《三角函數(shù)的應(yīng)用》教案1蘇教版必修4.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《三角函數(shù)的應(yīng)用》教案1蘇教版必修4.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《三角函數(shù)的應(yīng)用》教案1蘇教版必修4 【三維目標(biāo)】: 一、知識與技能 1. 會由函數(shù)的圖像討論其性質(zhì);能解決一些綜合性的問題。 2.會根據(jù)函數(shù)圖象寫出解析式;能根據(jù)已知條件寫出中的待定系數(shù). 3.培養(yǎng)學(xué)生用已有的知識解決實際問題的能力 二、過程與方法 1. 通過具體例題和學(xué)生練習(xí),使學(xué)生能根據(jù)函數(shù)圖象寫出解析式;能根據(jù)已知條件寫出中的待定系數(shù). 2.并根據(jù)圖像求解關(guān)系性質(zhì)的問題;講解例題,總結(jié)方法,鞏固練習(xí)。 三、情感、態(tài)度與價值觀 通過本節(jié)的學(xué)習(xí),滲透數(shù)形結(jié)合的思想;通過學(xué)生的親身實踐,引發(fā)學(xué)生學(xué)習(xí)興趣;創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度;讓學(xué)生感受數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)學(xué)生邏輯思維的縝密性。 【教學(xué)重點與難點】: 重點:待定系數(shù)法求三角函數(shù)解析式; 難點:根據(jù)函數(shù)圖象寫解析式;根據(jù)已知條件寫出中的待定系數(shù). 【學(xué)法與教學(xué)用具】: 1. 學(xué)法: 2. 教學(xué)用具:多媒體、實物投影儀. 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 復(fù)習(xí):1.由函數(shù)的圖象到的圖象的變換方法: 方法一:先移相位,再作周期變換,再作振幅變換; 方法二:先作周期變換,再作相位變換,再作振幅變換。 2.如何用五點法作的圖象? 3.對函數(shù)圖象的影響作用 二、研探新知 函數(shù)其中的物理意義:函數(shù)表示一個振動量時: :這個量振動時離開平衡位置的最大距離,稱為“振幅” :往復(fù)振動一次所需的時間,稱為“周期” :單位時間內(nèi)往返振動的次數(shù),稱為“頻率” :稱為相位 :x = 0時的相位,稱為“初相” 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 1.根據(jù)函數(shù)圖象求解析式 例1 已知函數(shù)(,)一個周期內(nèi)的函數(shù)圖象,如下圖 所示,求函數(shù)的一個解析式。 解:由圖知:函數(shù)最大值為,最小值為,又∵,∴,由圖知,∴,∴, 又∵, ∴圖象上最高點為 ,∴,即 ,可取,所以,函數(shù) 的一個解析式為. 2.由已知條件求解析式 例2 已知函數(shù)(,,)的最小值是, 圖象上相鄰兩個最高點與最低點的橫坐標(biāo)相差,且圖象經(jīng)過點,求這個函數(shù)的解析式。 解:由題意:, , ∴,∴,∴,又∵圖象經(jīng)過點,∴,即,又∵,∴, 所以,函數(shù)的解析式為. 例3.函數(shù)的橫坐標(biāo)伸長為原來的2倍,再向左平移個單位所得的曲線是的圖像,試求的解析式。 解:將的圖像向右平移個單位得: ,即的圖像再將橫坐標(biāo)壓縮到原來的得:, ∴ 3.函數(shù)的性質(zhì) 例4.求下列函數(shù)的最大值、最小值,以及達(dá)到最大值、最小值時x的集合。 (1) (2) (3) 四、鞏固深化,反饋矯正 1.已知函數(shù)x,在同一周期內(nèi),當(dāng)=時函數(shù)取得最大值2,當(dāng)= 時函數(shù)取得最小值-2,則該函數(shù)的解析式為_________ 2.已知函數(shù)x()的圖 象一個最高點為(2,),由點到相鄰最低點的圖象交軸于(6,0),求此函數(shù)的解析式。 3. x()的圖象對稱軸交圖象于點A(,5)與點(,0)相鄰的兩個對稱中心(,0),(,0),求函數(shù)解析式 4.已知函數(shù)(,,)的最大值為, 最小值為,周期為,且圖象過點,求這個函數(shù)的解析式。 5.已知函數(shù),當(dāng)時,(1)求的解析式;(2)求的最值及相應(yīng)的值;(3)求的單調(diào)區(qū)間;(4)求圖象對稱中心與對稱軸方程;(5)怎樣作出此函數(shù)圖象? 6.(k∈N+)1)若當(dāng)在任意兩個整數(shù)(含整數(shù)本身)間變化時,都至少取得一次最大值和最小值,求的最小值;(2)設(shè),若的值在上至少出現(xiàn)4次,但不多于8次,求的值。 五、歸納整理,整體認(rèn)識 1.學(xué)生總結(jié):請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。 2.師總結(jié):由的圖象求其函數(shù)式:一般來說,在這類由圖象求函數(shù)式的問題中,如對所求函數(shù)式中的A、ω、不加限制(如A、ω的正負(fù),角的范圍等),那么所求的函數(shù)式應(yīng)有無數(shù)多個不同的形式(這是由于所求函數(shù)是周期函數(shù)所致),因此這類問題多以選擇題的形式出現(xiàn),我們解這類題的方法往往因題而異,但逆用“五點法”作圖的思想?yún)s滲透在各不同解法之中。常見的問題形式有:(1)由已知函數(shù)圖象求解析式;(2)由已知條件求解析式。 六、承上啟下,留下懸念 1.函數(shù)的最小值是-2,其圖象最高點與最低點橫坐標(biāo)差是3p,又:圖象過點(0,1),求函數(shù)解析式。 2.函數(shù)(,,)的最小值是,其圖象相鄰的最高點和最低點的橫坐標(biāo)的差是,又圖象經(jīng)過點,求這個函數(shù)的解析式。 – – – – 3.如圖為函數(shù)(,)的圖象中的一段,根據(jù)圖象求它的解析式。 七、板書設(shè)計(略) 八、課后記: gkxx- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 三角函數(shù)的應(yīng)用 2019 2020 年高 數(shù)學(xué) 三角函數(shù) 應(yīng)用 教案 蘇教版 必修
鏈接地址:http://m.appdesigncorp.com/p-2398099.html