高中數(shù)學(xué) 第二章 圓錐曲線與方程 學(xué)業(yè)分層測(cè)評(píng)12 拋物線的簡(jiǎn)單幾何性質(zhì) 新人教A版選修1-1
《高中數(shù)學(xué) 第二章 圓錐曲線與方程 學(xué)業(yè)分層測(cè)評(píng)12 拋物線的簡(jiǎn)單幾何性質(zhì) 新人教A版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 圓錐曲線與方程 學(xué)業(yè)分層測(cè)評(píng)12 拋物線的簡(jiǎn)單幾何性質(zhì) 新人教A版選修1-1(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
【課堂新坐標(biāo)】2016-2017學(xué)年高中數(shù)學(xué) 第二章 圓錐曲線與方程 學(xué)業(yè)分層測(cè)評(píng)12 拋物線的簡(jiǎn)單幾何性質(zhì) 新人教A版選修1-1 (建議用時(shí):45分鐘) [學(xué)業(yè)達(dá)標(biāo)] 一、選擇題 1.過(guò)拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線( ) A.有且僅有一條 B.有且僅有兩條 C.有無(wú)窮多條 D.不存在 【解析】 由定義,知|AB|=5+2=7,因?yàn)閨AB|min=4,所以這樣的直線有且僅有兩條. 【答案】 B 2.過(guò)點(diǎn)(1,0)作斜率為-2的直線,與拋物線y2=8x交于A,B兩點(diǎn),則弦AB的長(zhǎng)為( ) A.2 B.2 C.2 D.2 【解析】 設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),由直線AB斜率為-2,且過(guò)點(diǎn)(1,0)得直線AB的方程為y=-2(x-1),代入拋物線方程y2=8x得4(x-1)2=8x,整理得x2-4x+1=0,則x1+x2=4,x1x2=1,|AB|===2.故選B. 【答案】 B 3.(2014全國(guó)卷Ⅰ)已知拋物線C:y2=x的焦點(diǎn)為F,A(x0,y0)是C上一點(diǎn),|AF|=x0,則x0=( ) A.1 B.2 C.4 D.8 【解析】 由y2=x得2p=1,即p=,因此焦點(diǎn)F,準(zhǔn)線方程為l:x=-,設(shè)A點(diǎn)到準(zhǔn)線的距離為d,由拋物線的定義可知d=|AF|,從而x0+=x0,解得x0=1,故選A. 【答案】 A 4.已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為( ) A.x=1 B.x=-1 C.x=2 D.x=-2 【解析】 設(shè)A(x1,y1),B(x2,y2),由A,B兩點(diǎn)在拋物線上,得y=2px1,① y=2px2,② 由①-②,得(y1-y2)(y1+y2)=2p(x1-x2).又線段AB的中點(diǎn)的縱坐標(biāo)為2,即y1+y2=4,直線AB的斜率為1,故2p=4,p=2,因此拋物線的準(zhǔn)線方程為x=-=-1. 【答案】 B 5.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線y2=4x的焦點(diǎn),A為拋物線上一點(diǎn),若OA=-4,則點(diǎn)A的坐標(biāo)為( ) 【導(dǎo)學(xué)號(hào):26160061】 A.(2,2) B.(1,2) C.(1,2) D.(2,2) 【解析】 設(shè)A(x,y),則y2=4x,① O=(x,y),A=(1-x,-y),OA=x-x2-y2=-4,② 由①②可解得x=1,y=2. 【答案】 B 二、填空題 6.拋物線y2=4x上的點(diǎn)到直線x-y+4=0的最小距離為_(kāi)_______. 【解析】 可判斷直線y=x+4與拋物線y2=4x相離, 設(shè)y=x+m與拋物線y2=4x相切, 則由消去x得y2-4y+4m=0. ∴Δ=16-16m=0,m=1. 又y=x+4與y=x+1的距離d==, 則所求的最小距離為. 【答案】 7.已知拋物線y2=4x,過(guò)點(diǎn)P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則y+y的最小值是________. 【解析】 設(shè)AB的方程為x=my+4,代入y2=4x得y2-4my-16=0,則y1+y2=4m,y1y2=-16, ∴y+y=(y1+y2)2-2y1y2=16m2+32, 當(dāng)m=0時(shí),y+y最小為32. 【答案】 32 8.過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|=,|AF|<|BF|,則|AF|=________. 【解析】 設(shè)過(guò)拋物線焦點(diǎn)的直線為y=k, 聯(lián)立得 整理得k2x2-(k2+2)x+k2=0, x1+x2=,x1x2=. |AB|=x1+x2+1=+1=,得k2=24, 代入k2x2-(k2+2)x+k2=0 得12x2-13x+3=0, 解之得x1=,x2=,又|AF|<|BF|, 故|AF|=x1+=. 【答案】 三、解答題 9.求過(guò)定點(diǎn)P(0,1),且與拋物線y2=2x只有一個(gè)公共點(diǎn)的直線方程. 【解】 如圖所示,若直線的斜率不存在, 則過(guò)點(diǎn)P(0,1)的直線方程為x=0, 由得 即直線x=0與拋物線只有一個(gè)公共點(diǎn). 若直線的斜率存在, 則設(shè)直線為y=kx+1,代入y2=2x得: k2x2+(2k-2)x+1=0, 當(dāng)k=0時(shí),直線方程為y=1,與拋物線只有一個(gè)交點(diǎn). 當(dāng)k≠0時(shí),Δ=(2k-2)2-4k2=0?k=.此時(shí),直線方程為y=x+1. 可知,y=1或y=x+1為所求的直線方程. 故所求的直線方程為x=0或y=1或y=x+1. 10.已知拋物線的焦點(diǎn)F在x軸上,直線l過(guò)F且垂直于x軸,l與拋物線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若△OAB的面積等于4,求此拋物線的標(biāo)準(zhǔn)方程. 【解】 由題意,拋物線方程為y2=2px(p≠0), 焦點(diǎn)F,直線l:x=, ∴A,B兩點(diǎn)坐標(biāo)為,, ∴|AB|=2|p|. ∵△OAB的面積為4, ∴2|p|=4,∴p=2. ∴拋物線方程為y2=4x. [能力提升] 1.(2014全國(guó)卷Ⅱ)設(shè)F為拋物線C:y2=3x的焦點(diǎn),過(guò)F且傾斜角為30的直線交C于A,B兩點(diǎn),則|AB|=( ) A. B.6 C.12 D.7 【解析】 ∵F為拋物線C:y2=3x的焦點(diǎn), ∴F, ∴AB的方程為y-0=tan 30, 即y=x-. 聯(lián)立得x2-x+=0. ∴x1+x2=-=,即xA+xB=. 由于|AB|=xA+xB+p,所以|AB|=+=12. 【答案】 C 2.已知AB是拋物線y2=2px(p>0)上的兩點(diǎn),O為原點(diǎn),若||=||,且拋物線的焦點(diǎn)恰好為△AOB的垂心,則直線AB的方程是( ) A.x=p B.x=p C.x=p D.x=3p 【解析】 ∵||=|O|, ∴A,B關(guān)于x軸對(duì)稱. 設(shè)A(x0,),B(x0,-). ∵AF⊥OB,F(xiàn), ∴=-1, ∴x0=p. 【答案】 C 3.(2014湖南高考)平面上一機(jī)器人在行進(jìn)中始終保持與點(diǎn)F(1,0)的距離和到直線x=-1的距離相等.若機(jī)器人接觸不到過(guò)點(diǎn)P(-1,0)且斜率為k的直線,則k的取值范圍是________. 【解析】 由題意知機(jī)器人行進(jìn)軌跡為以F(1,0)為焦點(diǎn),x=-1為準(zhǔn)線的拋物線,其方程為y2=4x.設(shè)過(guò)點(diǎn)(-1,0)且斜率為k的直線方程為y=k(x+1).代入y2=4x,得k2x2+(2k2-4)x+k2=0.∵機(jī)器人接觸不到該直線,∴Δ=(2k2-4)2-4k4<0,∴k2>1.∴k>1或k<-1. 【答案】 (-∞,-1)∪(1,+∞) 4.已知直線l:y=x+,拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上. (1)求拋物線C的方程; (2)設(shè)A,B是拋物線C上兩個(gè)動(dòng)點(diǎn),過(guò)A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若OO=0(O為原點(diǎn),A,B異于原點(diǎn)),試求點(diǎn)N的軌跡方程. 【導(dǎo)學(xué)號(hào):26160062】 【解】 (1)直線l:y=x+.① 過(guò)原點(diǎn)且垂直于l的直線方程為y=-2x.② 由①②,得x=-. ∵拋物線的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上, ∴-=-2,∴p=2. ∴拋物線C的方程為y2=4x. (2)設(shè)A(x1,y1),B(x2,y2),N(x,y). 由OO=0,得x1x2+y1y2=0. 又y=4x1,y=4x2, 解得y1y2=-16.③ 直線ON:y=x,即y=x.④ 由③④及y=y(tǒng)1,得點(diǎn)N的軌跡方程為x=-4(y≠0).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第二章 圓錐曲線與方程 學(xué)業(yè)分層測(cè)評(píng)12 拋物線的簡(jiǎn)單幾何性質(zhì) 新人教A版選修1-1 第二 圓錐曲線 方程 學(xué)業(yè) 分層 測(cè)評(píng) 12 拋物線 簡(jiǎn)單 幾何 性質(zhì) 新人 選修
鏈接地址:http://m.appdesigncorp.com/p-11973658.html