高二數(shù)學(xué)下學(xué)期期末考試試題 理5
《高二數(shù)學(xué)下學(xué)期期末考試試題 理5》由會(huì)員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)下學(xué)期期末考試試題 理5(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
商丘市一高2015-2016學(xué)年第二學(xué)期期末考試 高二數(shù)學(xué)(理科) 本試卷分試題卷和答題卡兩部分.試題卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題),共4頁(yè);答題卡共6頁(yè)。滿分為150分,考試時(shí)間為120分鐘.考生作答時(shí),請(qǐng)按要求把答案涂、寫在答題卡規(guī)定的范圍內(nèi),超出答題框或答在試題卷上的答案無(wú)效.考試結(jié)束只收答題卡。 第Ⅰ卷 (選擇題,共60分) 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) (1)已知全集,集合,則集合可以表示為 (A) (B) (C) (D) (2)設(shè)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且,則 (A) (B) (C) (D) (3)下列判斷錯(cuò)誤的是 (A)“”是“”成立的充分不必要條件 (B)命題“”的否定是“” (C)“若,則直線和直線互相垂直”的逆否命題為真命題 (D)若為假命題,則均為假命題 (4)分配4名水暖工去3個(gè)不同的居民家里檢查暖氣管道. 要求4名水暖工都分配出去, 并每名水暖工只去一個(gè)居民家,且每個(gè)居民家都要有人去檢查,那么分配的方案共有 (A)種 (B)種 (C)種 (D)種 (5)某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布 ,已知,若按成績(jī)分層抽樣的方式取100份試 卷進(jìn)行分析,則應(yīng)從120分以上的試卷中抽取 (A)份 (B)份 (C)份 (D)份 (6)已知是定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)), 則的值為 (A) (B) (C) (D) (7)若,則的值為 (A) (B) (C) (D) (8)已知直線與曲線相切,則的值為 (A) (B) (C) (D) (9)已知是函數(shù)的極小值點(diǎn),則函數(shù)的極大值為 (A) (B) (C) (D) (10)給出下列四個(gè)結(jié)論: ①二項(xiàng)式的展開式中,常數(shù)項(xiàng)為; ②由直線和曲線及軸所圍成的圖形的面積是; ③已知隨機(jī)變量服從正態(tài)分布,則; ④設(shè)回歸直線方程為,當(dāng)變量增加一個(gè)單位時(shí),平均增加個(gè)單位. 其中正確結(jié)論的個(gè)數(shù)為 (A)1 (B)2 (C)3 (D)4 (11)一臺(tái)型號(hào)自動(dòng)機(jī)床在一小時(shí)內(nèi)不需要工人照看的概率為,有臺(tái)這種型號(hào)的自動(dòng)機(jī)床各自獨(dú)立工作,則在一小時(shí)內(nèi)至多臺(tái)機(jī)床需要工人照看的概率是. (A) (B) (C) (D) (12)已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為,若,且 ,,則不等式的解集為 (A) (B) (C) (D) 第Ⅱ卷(非選擇題,共90分) 二、填空題(本大題共4小題,每小題5分,共20分) (13)已知偶函數(shù)在區(qū)間上單調(diào)遞減,則滿足的的取值范圍 是 . (14)從裝有個(gè)紅球、個(gè)白球的袋中任取個(gè)球,則所取的個(gè)球中至少有個(gè)白球的概率 是 . (15)設(shè),則展開式的常數(shù)項(xiàng)為 . (16))觀察下列算式: , , ,,… … … … 若某數(shù)按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“”這個(gè)數(shù),則 . 三、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟) (17)(本小題滿分10分) 已知,(),且是的必要而不充分條件, 求實(shí)數(shù)的取值范圍. (18)(本小題滿分12分) 已知函數(shù). (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值; (Ⅱ)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍. (19)(本小題滿分12分) 近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)篷布發(fā)展的新機(jī)遇,年雙期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為,對(duì)服務(wù)的好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為次. (Ⅰ)是否可以在犯錯(cuò)誤概率不超過的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? (Ⅱ)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的 次數(shù)為隨機(jī)變量: ①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列(概率用組合數(shù)算式表示); ②求的數(shù)學(xué)期望和方差. 參考數(shù)據(jù)及公式如下: 高二數(shù)學(xué)理科 總4頁(yè) 第4頁(yè) (,其中) A B D C P (第20題圖) (20)(本小題滿分12分) 在四棱錐中,平面,∥, ,. (Ⅰ) 證明:平面; (Ⅱ) 若二面角的大小為60,求的值. (21)(本小題滿分12分) 已知△的頂點(diǎn)在橢圓上,點(diǎn)在直線:,且∥. (Ⅰ)當(dāng)邊通過坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及△的面積; (Ⅱ)當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線的方程. (22)(本小題滿分12分) 已知函數(shù). (Ⅰ)當(dāng) 時(shí),求函數(shù)的單調(diào)區(qū)間; (Ⅱ)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取 值范圍. 商丘市一高2015—2016學(xué)年第二學(xué)期期末考試參考答案 高二數(shù)學(xué)(理科) 一、選擇題 (1)C (2)B (3)D (4)B (5)C (6)A (7)A (8)B (9)D (10)C (11)D (12)A 二、填空題 (13) (14) (15) (16) 三、解答題 (17)(本小題12分) 解:由得,或,……………3分 由得(), 或,………………………6分 是的必要而不充分條件,∴,………………………7分 即,解得………………………10分 (18)(本小題滿分12分) 解:(Ⅰ)函數(shù)的定義域?yàn)?…………………………………1分 當(dāng)時(shí), …………………2分 當(dāng)變化時(shí),的變化情況如下: - 0 + 極小值 的單調(diào)遞減區(qū)間是;單調(diào)遞增區(qū)間是.……………4分 極小值是,無(wú)極大值……………………………………6分 (Ⅱ)由,得……………………………8分 又函數(shù)為上的單調(diào)減函數(shù), 則在上恒成立. ………10分 所以在恒成立,所以的取值范圍是.………… 12分 (19)(本小題滿分12分) 解:(Ⅰ) 由題意可得關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表: 對(duì)服務(wù)好評(píng) 對(duì)服務(wù)不滿意 合計(jì) 對(duì)商品好評(píng) 80 40 120 對(duì)商品不滿意 70 10 80 合計(jì) 150 50 200 , 可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).………4分 (Ⅱ) 每次購(gòu)物時(shí),對(duì)商品和服務(wù)都好評(píng)的概率為,且的取值可以是 . ……………5分 其中; ; ; ; ; . 的分布列為: 0 1 2 3 4 5 ………………………10分 由于,則; . …………………………………12分 (20)(本小題滿分12分) 解:(Ⅰ) 設(shè)為與的交點(diǎn),作⊥于點(diǎn). 由四邊形是等腰梯形得 ,, ∴, 從而得, ∴,即 由⊥平面得,∴⊥平面.………………5分 方法一: (Ⅱ) 作于點(diǎn),連接. 由(Ⅰ)知⊥平面,故. ∴⊥平面,從而得,. 故是二面角的平面角,∴.………………8分 在Rt△中,由,得. ………………9分 在Rt△中,.設(shè),可得.………………11分 解得,即. ………………12分 方法二: (Ⅱ) 由(Ⅰ)知.以為原點(diǎn),所在直線為x,y軸, 建立空間直角坐標(biāo)系,如圖所示.………………6分 由題意知各點(diǎn)坐標(biāo)如下:,,, .………………7分 由⊥平面,得∥軸, 故設(shè)點(diǎn)(). 設(shè)為平面的法向量, 由,,得 取,得. ………………10分 又平面的法向量為,于是 . 解得, 即. ………………12分 (21)(本小題滿分12分) 解:(Ⅰ)∵∥,且邊通過點(diǎn),∴所在直線的方程為,……1分 設(shè)兩點(diǎn)坐標(biāo)分別為. 由,得, .………………2分 ∴.………………3分 又∵邊上的高等于原點(diǎn)到直線的距離,∴, .………………5分 (Ⅱ)設(shè)所在直線的方程為, 由,得. ∵在橢圓上, ∴,解得. ………………6分 設(shè)兩點(diǎn)坐標(biāo)分別為. 則,, ∴.………………8分 又∵的長(zhǎng)等于點(diǎn)到直線的距離,即. ∴.………………10分 ∵, ∴當(dāng)時(shí),邊最長(zhǎng). 此時(shí)所在直線的方程為. ………………12分 (22)(本小題滿分12分) 解:(Ⅰ)當(dāng)時(shí),, 則, …………………………1分 令得或;令得, ∴函數(shù)的單調(diào)遞增區(qū)間為和, 單調(diào)遞減區(qū)間為. ………………………4分 (Ⅱ)由題意, (1)當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,此時(shí),不存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為. ………………………6分 (2)當(dāng)時(shí),令,有,, ①當(dāng)時(shí),函數(shù)在上單調(diào)遞增, 顯然符合題意. ………………………7分 ②當(dāng)即時(shí),函數(shù)在和上單調(diào)遞 增,在上單調(diào)遞減,在處取得極大值,且, 要使對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,只需,解得,又, 所以此時(shí)實(shí)數(shù)的取值范圍是 . ……………9分 ③當(dāng)即時(shí),函數(shù)在和上單調(diào)遞增, 在上單調(diào)遞減,要存在實(shí)數(shù),使得當(dāng)時(shí), 函數(shù)的最大值為,需, 代入化簡(jiǎn)得,① 令,因?yàn)楹愠闪ⅲ? 故恒有,所以時(shí),①式恒成立, 綜上,實(shí)數(shù)的取值范圍是. ………………………12分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高二數(shù)學(xué)下學(xué)期期末考試試題 理5 數(shù)學(xué) 下學(xué) 期末考試 試題
鏈接地址:http://m.appdesigncorp.com/p-11825291.html