《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 用導(dǎo)數(shù)求切線(xiàn)方程的四種類(lèi)型拓展資料素材 北師大版選修1-1》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 用導(dǎo)數(shù)求切線(xiàn)方程的四種類(lèi)型拓展資料素材 北師大版選修1-1(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、用導(dǎo)數(shù)求切線(xiàn)方程的四種類(lèi)型
求曲線(xiàn)的切線(xiàn)方程是導(dǎo)數(shù)的重要應(yīng)用之一,用導(dǎo)數(shù)求切線(xiàn)方程的關(guān)鍵在于求出切點(diǎn)及斜率,其求法為:設(shè)是曲線(xiàn)上的一點(diǎn),則以的切點(diǎn)的切線(xiàn)方程為:.若曲線(xiàn)在點(diǎn)的切線(xiàn)平行于軸(即導(dǎo)數(shù)不存在)時(shí),由切線(xiàn)定義知,切線(xiàn)方程為.
下面例析四種常見(jiàn)的類(lèi)型及解法.
類(lèi)型一:已知切點(diǎn),求曲線(xiàn)的切線(xiàn)方程
此類(lèi)題較為簡(jiǎn)單,只須求出曲線(xiàn)的導(dǎo)數(shù),并代入點(diǎn)斜式方程即可.
例1 曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為( )
A. B.
C. D.
解:由則在點(diǎn)處斜率,故所求的切線(xiàn)方程為,即,因而選B.
類(lèi)型二:已知斜率,求曲線(xiàn)的切線(xiàn)方程
此類(lèi)題可利用斜率求出切點(diǎn),再用點(diǎn)斜式方程加以解決.
例2
2、與直線(xiàn)的平行的拋物線(xiàn)的切線(xiàn)方程是( )
A. B.
C. D.
解:設(shè)為切點(diǎn),則切點(diǎn)的斜率為.
.
由此得到切點(diǎn).故切線(xiàn)方程為,即,故選D.
評(píng)注:此題所給的曲線(xiàn)是拋物線(xiàn),故也可利用法加以解決,即設(shè)切線(xiàn)方程為,代入,得,又因?yàn)椋?,故選D.
類(lèi)型三:已知過(guò)曲線(xiàn)上一點(diǎn),求切線(xiàn)方程
過(guò)曲線(xiàn)上一點(diǎn)的切線(xiàn),該點(diǎn)未必是切點(diǎn),故應(yīng)先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法.
例3 求過(guò)曲線(xiàn)上的點(diǎn)的切線(xiàn)方程.
解:設(shè)想為切點(diǎn),則切線(xiàn)的斜率為.
切線(xiàn)方程為.
.
又知切線(xiàn)過(guò)點(diǎn),把它代入上述方程,得.
解得,或.
故所求切線(xiàn)方程為,或,即,或.
評(píng)注:可以發(fā)現(xiàn)直線(xiàn)并不以為切點(diǎn)
3、,實(shí)際上是經(jīng)過(guò)了點(diǎn)且以為切點(diǎn)的直線(xiàn).這說(shuō)明過(guò)曲線(xiàn)上一點(diǎn)的切線(xiàn),該點(diǎn)未必是切點(diǎn),解決此類(lèi)問(wèn)題可用待定切點(diǎn)法.
類(lèi)型四:已知過(guò)曲線(xiàn)外一點(diǎn),求切線(xiàn)方程
此類(lèi)題可先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法來(lái)求解.
例4 求過(guò)點(diǎn)且與曲線(xiàn)相切的直線(xiàn)方程.
解:設(shè)為切點(diǎn),則切線(xiàn)的斜率為.
切線(xiàn)方程為,即.
又已知切線(xiàn)過(guò)點(diǎn),把它代入上述方程,得.
解得,即.
評(píng)注:點(diǎn)實(shí)際上是曲線(xiàn)外的一點(diǎn),但在解答過(guò)程中卻無(wú)需判斷它的確切位置,充分反映出待定切點(diǎn)法的高效性.
例5 已知函數(shù),過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn),求此切線(xiàn)方程.
解:曲線(xiàn)方程為,點(diǎn)不在曲線(xiàn)上.
設(shè)切點(diǎn)為,
則點(diǎn)的坐標(biāo)滿(mǎn)足.
因,
故切線(xiàn)的方程為.
點(diǎn)在切線(xiàn)上,則有.
化簡(jiǎn)得,解得.
所以,切點(diǎn)為,切線(xiàn)方程為.
評(píng)注:此類(lèi)題的解題思路是,先判斷點(diǎn)A是否在曲線(xiàn)上,若點(diǎn)A在曲線(xiàn)上,化為類(lèi)型一或類(lèi)型三;若點(diǎn)A不在曲線(xiàn)上,應(yīng)先設(shè)出切點(diǎn)并求出切點(diǎn).