2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版

上傳人:xt****7 文檔編號(hào):106813514 上傳時(shí)間:2022-06-14 格式:DOC 頁(yè)數(shù):5 大?。?4.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版_第1頁(yè)
第1頁(yè) / 共5頁(yè)
2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版_第2頁(yè)
第2頁(yè) / 共5頁(yè)
2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版_第3頁(yè)
第3頁(yè) / 共5頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 坐標(biāo)系與參數(shù)方程 第二節(jié) 參數(shù)方程檢測(cè) 理 新人教A版 1.(2018·湖南五市十校高三聯(lián)考)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為ρ=4cos θ-6sin θ,直線l的參數(shù)方程為(t為參數(shù)). (1)寫(xiě)出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑; (2)若直線l與圓C交于不同的兩點(diǎn)P,Q,且|PQ|=4,求直線l的斜率. 解:(1)由ρ=4cos θ-6sin θ,得ρ2=4ρcos θ-6ρsin θ, 將ρ2=x2+y2,ρcos θ=x,ρsin θ=y(tǒng)代入,可得x2+y2-4x+6y=0,

2、即(x-2)2+(y+3)2=13,所以圓心的坐標(biāo)為(2,-3),半徑為. (2)由直線l的參數(shù)方程知直線l過(guò)定點(diǎn)(4,0),且由題意知,直線l的斜率一定存在. 設(shè)直線l的方程為y=k(x-4). 因?yàn)閨PQ|=4,所以=3, 解得k=0或k=-. 所以直線l的斜率為0或-. 2.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cos θ,θ∈. (1)求C的參數(shù)方程; (2)設(shè)點(diǎn)D在C上,C在D處的切線與直線l:y=x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo). 解:(1)C的普通方程為(x-1)2+y2=1(0≤y

3、≤1). 可得C的參數(shù)方程為(t為參數(shù),0≤t≤π). (2)設(shè)D(1+cos t,sin t). 由(1)知C是以G(1,0)為圓心,1為半徑的上半圓. 因?yàn)镃在點(diǎn)D處的切線與l垂直,所以直線GD與l的斜率相同,tan t=,t=. 故D的坐標(biāo)為,即. 3.在平面直角坐標(biāo)系xOy中,曲線C1的普通方程為x2+y2+2x-4=0,曲線C2的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. (1)求曲線C1,C2的極坐標(biāo)方程; (2)求曲線C1與C2交點(diǎn)的極坐標(biāo),其中ρ≥0,0≤θ<2π. 解:(1)依題意,將代入x2+y2+2x-4=0,可得ρ2+

4、2ρcos θ-4=0. 由得y2=x,將代入上式化簡(jiǎn)得ρsin2 θ=cos θ, 故曲線C1的極坐標(biāo)方程為ρ2+2ρcos θ-4=0,曲線C2的極坐標(biāo)方程為ρsin2 θ=cos θ. (2)將y2=x代入x2+y2+2x-4=0,得x2+3x-4=0,解得x=1或x=-4(舍去), 當(dāng)x=1時(shí),y=±1,即C1與C2交點(diǎn)的直角坐標(biāo)為A(1,1),B(1,-1). ∵ρA=,ρB=,tan θA=1,tan θB=-1,ρ≥0,0≤θ<2π, ∴θA=,θB=, 故曲線C1與C2交點(diǎn)的極坐標(biāo)為A,B. 4.(2018·四川成都七中期中)在平面直角坐標(biāo)系xOy中,圓C的參數(shù)

5、方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),. (1)設(shè)P為線段MN的中點(diǎn),求直線OP的直角坐標(biāo)方程; (2)判斷直線l與圓C的位置關(guān)系. 解:(1)M,N的直角坐標(biāo)分別為(2,0),,于是點(diǎn)P的坐標(biāo)為, 所以直線OP的直角坐標(biāo)方程為y=x,即x-y=0. (2)直線l的方程為x+y-2=0, 圓C的方程為(x-2)2+(y+)2=4, 圓心C(2,-)到l的距離d=<2, 所以直線l與圓C相交. B級(jí) 能力提升練 5.(2018·河北承德實(shí)驗(yàn)中學(xué)期中)在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(t為參

6、數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos=-1. (1)求圓C的普通方程和直線l的直角坐標(biāo)方程; (2)設(shè)直線l與x軸,y軸分別交于A,B兩點(diǎn),P是圓C上任一點(diǎn),求A,B兩點(diǎn)的極坐標(biāo)和△PAB面積的最小值. 解:(1)由消去參數(shù)t,得 (x+5)2+(y-3)2=2, 所以圓C的普通方程為(x+5)2+(y-3)2=2. 由ρcos=-1,得ρcos θ-ρsin θ=-2, 所以直線l的直角坐標(biāo)方程為x-y+2=0. (2)直線l與x軸,y軸的交點(diǎn)分別為A(-2,0),B(0,2),化為極坐標(biāo)為A(2,π),B, 設(shè)P點(diǎn)的坐

7、標(biāo)為(-5+cos t,3+sin t),則P點(diǎn)到直線l的距離d= =, 所以dmin==2,又|AB|=2, 所以△PAB面積的最小值為×2×2=4. 6.(2018·廣西桂林綜合模擬金卷)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為ρ=asin θ,直線l的參數(shù)方程為(t為參數(shù)). (1)若a=2,M是直線l與x軸的交點(diǎn),N是圓C上一動(dòng)點(diǎn),求|MN|的最小值; (2)若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的倍,求a的值. 解:(1)當(dāng)a=2時(shí),圓C的極坐標(biāo)方程為ρ=2sin θ,可化為ρ2=2ρsin θ, 化為直角坐標(biāo)方程為x2+y

8、2-2y=0,即x2+(y-1)2=1. 直線l的普通方程為4x+3y-8=0,與x軸的交點(diǎn)M的坐標(biāo)為(2,0), ∵圓心(0,1)與點(diǎn)M(2,0)間的距離為, ∴|MN|的最小值為-1. (2)ρ=asin θ可化為ρ2=aρsin θ, ∴圓C的直角坐標(biāo)方程為x2+2=. ∵直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的倍, ∴圓心到直線l的距離為圓C半徑的一半, ∴=×, 解得a=32或a=. 7.在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),t≠0,其中0≤α<π).在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sin θ,C3:ρ=2cos θ. (1)求C

9、2與C3交點(diǎn)的直角坐標(biāo); (2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|的最大值. 解:(1)曲線C2的直角坐標(biāo)方程為x2+y2-2y=0,曲線C3的直角坐標(biāo)方程為x2+y2-2x=0. 聯(lián)立解得或 所以C2與C3交點(diǎn)的直角坐標(biāo)為(0,0)和. (2)曲線C1的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的極坐標(biāo)為(2sin α,α),B的極坐標(biāo)為(2cos α,α). 所以|AB|=|2sin α-2cos α|=4. 當(dāng)α=時(shí),|AB|取得最大值,最大值為4. 8.(2019·東北三省四市教研聯(lián)合體模擬)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為

10、(θ為參數(shù)),直線l1的方程為kx-y+k=0,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l2的極坐標(biāo)方程為cos θ-2sin θ=. (1)寫(xiě)出曲線C的普通方程和直線l2的直角坐標(biāo)方程; (2)若l1與C交于不同的兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP|·|AQ|. 解:(1)由曲線C的參數(shù)方程消去參數(shù),得曲線C的普通方程為(x+3)2+(y-4)2=16, 由cos θ-2sin θ=,得ρcos θ-2ρsin θ=4, 將x=ρcos θ,y=ρsin θ代入,得直線l2的直角坐標(biāo)方程為x-2y-4=0. (2)設(shè)M,N,Q所對(duì)應(yīng)的參數(shù)分別為t1,t2,t3, 由題意得直線l1恒過(guò)點(diǎn)A(-1,0), 故l1的參數(shù)方程為(t為參數(shù)), 代入曲線C的普通方程得t2+4t(cos α-2sin α)+4=0, 則t1+t2=4(2sin α-cos α), 將代入x-2y-4=0, 整理得t3=, 則|AP|·|AQ|=·|t3|=2|2sin α-cos α|·=10.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!