2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)

上傳人:xt****7 文檔編號:105151981 上傳時間:2022-06-11 格式:DOC 頁數(shù):8 大?。?MB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)_第1頁
第1頁 / 共8頁
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)_第2頁
第2頁 / 共8頁
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析)(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題六 三角函數(shù)(含解析) 重點(diǎn) 1 三角函數(shù)的概念 1.角度制與弧度制的互化:基本換算關(guān)系  2.扇形的弧長與面積公式:(1)扇形的弧長公式: ?。?)扇形的面積公式: 3.三角函數(shù)的定義與符號:六個比值定義,在四個象限的正負(fù)號 4.三角函數(shù)線及其應(yīng)用:單位圓中的有向線段表示的正弦線、余弦線、正切線 [高考??冀嵌萞 角度1已知扇形的中心角是,所在圓的半徑為. (1)若求扇形的弧長及該弧所在的弓形面積 (2)若扇形的周長是定值當(dāng)為多少弧度時,扇形有最大面積?求出最大面積. 解析:(1), (2) 當(dāng)且僅當(dāng),即時,扇形有最大面積

2、 角度2已知,那么角是( C?。? A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 解析:與異號,故選C 角度3 函數(shù)的定義域是______________________ 解析:應(yīng)有,利用單位圓中的正弦線可得 ,即 重點(diǎn) 2 同角三角函數(shù)關(guān)系與誘導(dǎo)公式 1.同角三角函數(shù)基本關(guān)系式:三個基本原來有八個關(guān)系,可酌情增加. 2.誘導(dǎo)公式:奇變偶不變,符號看象限,掌握規(guī)律,就可以記住所有公式了. [高考??冀嵌萞 角度1 若,則( B ) A. B. C.

3、 D. 解析:由已知,代入中 得,,故選B 角度2記,那么( B ) A. B. C. D. 點(diǎn)評:本小題主要考查誘導(dǎo)公式、同角三角函數(shù)關(guān)系式等三角函數(shù)知識,并突出了弦切互化這一轉(zhuǎn)化思想的應(yīng)用. 解析1:,所以 解析2:, 角度3已知,則的值為( ?。? A. B. C. 或 D. 或 解析:由已知條件得. 即.解得或 由知,從而或,故選C 重點(diǎn) 3 三角恒等變換 1.三角恒等變換的通性通法:從

4、函數(shù)名、角、運(yùn)算三方面進(jìn)行差異分析,再利用三角變換使異角化同角、異名化同名、高次化低次等. 2.要求熟練、靈活運(yùn)用以下公式: (1)兩角和與差的三角函數(shù):_______________________;_____________________; =____________________ (2)二倍角公式:_______________;=_______________=__________________=_________________ (3)升降冪公式:________________;_____________

5、(4)輔助角公式:其中,①____________; ②__________________;③_________________.可以當(dāng)作公式直接使用的. 3.除了掌握公式的順用,還需掌握逆用公式、變形用公式,如的變形用法. [高考常考角度] 角度1 若,則的值等于( ) A. B. C. D. 解析:由,故選D 角度2 若則( ) A. B. C. D. 解析: ,故選C 角度3已知且求的值. 解:

6、點(diǎn)評:此題的角的范圍討論尤其重要,否則很容易錯解. 角度4已知 (1)求 (2)求的值. 解:(1) (2) 重點(diǎn) 4 三角函數(shù)的圖象與性質(zhì) 1.熟悉正弦曲線、余弦曲線、正切曲線 2.熟悉正弦函數(shù)、余弦函數(shù)、正切函數(shù)的定義域、值域、奇偶性、周期性、單調(diào)性、對稱軸、對稱中心 3.熟練掌握的單調(diào)性、對稱軸、對稱中心的求法 4.熟練掌握“五點(diǎn)作圖法”,熟悉由函數(shù)圖象求解解析式的步驟及過程 5.熟悉的圖象的相位變換、周期變換和振幅變換 [高考??冀嵌萞 角度1函數(shù)是常數(shù),的部分圖象如圖所示,則 解析:由圖可知: 利用五點(diǎn)作圖法知

7、 角度2 如果函數(shù)的圖象關(guān)于點(diǎn)中心對稱,那么的最小值為( ) A. B. C. D. 解析:小心了,這是余弦函數(shù)的題,從而 當(dāng)時,的最小值為 角度3已知函數(shù),其中為實(shí)數(shù),若對恒成立,且,則的單調(diào)遞增區(qū)間是( C ) A. B. C. D. 點(diǎn)評:本題考查正弦函數(shù)的有界性,考查正弦函數(shù)的單調(diào)性.屬中等偏難題. 解析:若對恒成立,則,所以, . 由,(),可知,即, 所以,代入,得, 由,得,故選C. 或者:由 或,

8、時,有, 由,得,故選C. 角度4設(shè)函數(shù),其中角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn),且. (Ⅰ)若點(diǎn)的坐標(biāo)為,求的值; (Ⅱ)若點(diǎn)為平面區(qū)域上的一個動點(diǎn),試確定角的取值范圍,并求函數(shù)的最小值和最大值. 點(diǎn)評:本小題主要考查三角函數(shù)、不等式等基礎(chǔ)知識,考查運(yùn)算能力、推理論證能力、考查函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸思想等。 解析:(Ⅰ)因?yàn)榈淖鴺?biāo)為,則 . (Ⅱ)作出平面區(qū)域,則為圖中的的區(qū)域, 其中,,. 因?yàn)?,所以? 從而,則, 所以,. 所以當(dāng),即時,取得最大值,且最大值為; 當(dāng),即時,取得最小值,且最小值為. 角度5已知函

9、數(shù),,,.的部分圖象,如圖所示,、分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)的坐標(biāo)為. (Ⅰ)求的最小正周期及的值; (Ⅱ)若點(diǎn)的坐標(biāo)為,,求的值. 解析:(Ⅰ)由題意得, 因?yàn)樵诘膱D象上,所以 又因?yàn)椋? (Ⅱ)設(shè)點(diǎn),由題意可知,得,所以 解法一 如圖,連接,在中,,由余弦定理得 , 解得 又, 所以 解法二 如圖,作軸,垂足為,則 因?yàn)椋? 又,, 即 角度6已知函數(shù) (Ⅰ)函數(shù)的圖象可由函數(shù)的圖象經(jīng)過怎樣的變化得出? (Ⅱ)求函數(shù)的最小值,并求使用取得最小值的的集合。 解析:(Ⅰ), 所以要得到的圖象只

10、需要把的圖象向左平移個單位長度,再將所得的圖象向上平移個單位長度即可. (Ⅱ). 當(dāng),即時,取得最小值. 取得最小值時,對應(yīng)的的集合為 重點(diǎn) 5 解三角形 1.正弦定理:一個基本形,兩個變形 2.余弦定理:一種基本形,一種變形 3.三角形的面積公式: 4.熟悉常用的邊角轉(zhuǎn)換方法 [高考??冀嵌萞 角度1如圖,中,,點(diǎn) 在邊上,,則的長度等于______. 解析: 解法一 由余弦定理 , 所以. 再由正弦定理 ,即,所以. 解法二 如圖,取中點(diǎn)為, 由正弦定理 ,可得

11、解法三 作于,因?yàn)?,所以為的中點(diǎn), 因?yàn)?,則. 因?yàn)闉橛幸唤菫榈闹苯侨切危遥裕? 角度2在中,則的面積為 ____________ 解析:作圖,由余弦定理得 , 點(diǎn)評:如果由,就復(fù)雜多了. 角度3已知 的一個內(nèi)角為,并且三邊長構(gòu)成公差為的等差數(shù)列,則的面積為 ______ 點(diǎn)評:本題考查等差數(shù)列的概念,考查余弦定理的應(yīng)用,考查利用公式求三角形面積. 解析:解法一 的內(nèi)角一定是的最大角,不妨設(shè)則 由余弦定理,, 解法二 設(shè)三角形的三邊長分別為,最大角為, 由余弦定理得, 所以三邊長為,故. 角度4在中,,則的最大值為_________ 點(diǎn)評:本題

12、考查正弦定理、兩角和差的三角函數(shù)、三角函數(shù)的最值。綜合題。 解析:由正弦定理知, 所以, 又,故填寫。 角度5在銳角中,角的對邊分別為已知, (1)求的值; (2)若,,求的值. 解:(1)在銳角中, 則 (2) 由余弦定理得, 突破1個高考難點(diǎn) 難點(diǎn)1 解三角形在實(shí)際中的應(yīng)有 典例 貨輪在海上以40 km/h的速度由B到C航行,航向?yàn)榉轿唤牵珹處有燈塔,其方位角,在C處觀測燈塔A的方位角,由B到C需航行半小時,則C到燈塔A的距離是 解析:由題意知 又 規(guī)避3個易失分點(diǎn) 易失分點(diǎn)1 忽視角的范圍 典例

13、 已知為銳角,求的值. 解析:(1) 易失分點(diǎn)2 圖象變換方向把握不準(zhǔn) 典例 將函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( C ) A. B. C. D. 解析:將函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度,所得函數(shù)圖象的解析式為, 再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是.故選C 點(diǎn)評:常見錯誤:(1)平移后變?yōu)椋? (2)再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)變?yōu)? 易失分點(diǎn)3 解三角形時出現(xiàn)漏解或多解 典例 在中,角所對應(yīng)的邊為,且 (1)若角,則角=______;(2)若角,則=______. 解析:(1)由正弦定理得或就多解了,原因是忽略了    因此 (2)由正弦定理得或 當(dāng)時,;當(dāng)時,; 如果忽略角有兩解,又造成漏解了.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!