移動(dòng)機(jī)器人路徑規(guī)劃

上傳人:w****2 文檔編號(hào):22351595 上傳時(shí)間:2021-05-24 格式:PPT 頁數(shù):29 大?。?39.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
移動(dòng)機(jī)器人路徑規(guī)劃_第1頁
第1頁 / 共29頁
移動(dòng)機(jī)器人路徑規(guī)劃_第2頁
第2頁 / 共29頁
移動(dòng)機(jī)器人路徑規(guī)劃_第3頁
第3頁 / 共29頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《移動(dòng)機(jī)器人路徑規(guī)劃》由會(huì)員分享,可在線閱讀,更多相關(guān)《移動(dòng)機(jī)器人路徑規(guī)劃(29頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 1.什 么 是 路 徑 規(guī) 劃2.路 徑 規(guī) 劃 的 常 用 方 法 3.人 工 勢 場 法 依據(jù)某種最優(yōu)準(zhǔn)則,在工作空間中尋找一條從起始狀態(tài)到目標(biāo)狀態(tài)的避開障礙物的最優(yōu)路徑。 1. 始于初始點(diǎn)止于目標(biāo)點(diǎn)。2. 避障。3. 盡可能優(yōu)化的路徑。 2.1基于幾何構(gòu)造的方法(自由空間法)基本步驟:1.將機(jī)器人抽象為點(diǎn),適當(dāng)擴(kuò)大障礙物的大小。2.構(gòu)造自由空間。 3.采用圖搜索算法如Dijkstra算法尋找最優(yōu)路徑。 2.11基于幾何構(gòu)造的常用算法可視圖法 Voronoi法 2.2柵格法(1)圖中灰色區(qū)域?yàn)檎系K物 2.2柵格法(2)圖中黃色的路線表示該算法得到的最優(yōu)路徑 2.2D*(dynamic A

2、*)算法(3)美國火星探測器核心的尋路算法就是采用的D*算法 適合于動(dòng)態(tài)路徑規(guī)劃 D*算法的思路可以推廣到改造自由空間法使其具有動(dòng)態(tài)規(guī)劃功能 2.3智能化路徑規(guī)劃方法基于邏輯推理的路徑規(guī)劃方法基于模糊邏輯的路徑規(guī)劃方法基于強(qiáng)化學(xué)習(xí)的路徑規(guī)劃方法基于遺傳算法的路徑規(guī)劃方法基于神經(jīng)網(wǎng)絡(luò)的路徑規(guī)劃方法 2.31基于邏輯推理的路徑規(guī)劃方法1.定義一個(gè)狀態(tài)(state)集,該集合反映機(jī)器人通過傳感器測得的當(dāng)前狀態(tài)。2.定義一個(gè)行為(action)集,該集合反映了機(jī)器人當(dāng)前可以采取的動(dòng)作。3.確定從狀態(tài)到行為的映射關(guān)系。 2.32基于模糊邏輯的路徑規(guī)劃方法在基于邏輯推理的路徑規(guī)劃方法基礎(chǔ)進(jìn)行改進(jìn):傳感器的

3、一次測量值與多個(gè)狀態(tài)對應(yīng),每個(gè)狀態(tài)有一個(gè)隸屬度對應(yīng)。根據(jù)模糊推理結(jié)果確定行為。 2.33基于強(qiáng)化學(xué)習(xí)的路徑規(guī)劃在基于邏輯推理的路徑規(guī)劃方法基礎(chǔ)進(jìn)行改進(jìn):具有在線學(xué)習(xí)功能(通過Q學(xué)習(xí)算法實(shí)現(xiàn)) 2.34基于遺傳算法的路徑規(guī)劃(1)建模: 對2維路徑規(guī)劃問題,將待規(guī)劃的路徑看成是n個(gè)點(diǎn)組成的點(diǎn)集,除初始點(diǎn)和目標(biāo)點(diǎn)外其余n-2個(gè)點(diǎn)(xi, yi ) i=2,3,4n-1都未知,共有2(n-2)個(gè)未知參數(shù)。 2.34基于遺傳算法的路徑規(guī)劃(2)1 12 2 22, 2, 3, 3, 1, 1 1 12 2min ( . ) ( ) ( ) n nl n n i i i i ii iE f x y x

4、y x y L x x y y 優(yōu)化目標(biāo):約束:(xi, yi )必須在障礙物外部。采用懲罰函數(shù)法轉(zhuǎn)化為無約束優(yōu)化問題進(jìn)行處理: min l cE E wE (EC為懲罰項(xiàng)) 2.34基于遺傳算法的路徑規(guī)劃(3)遺傳算法具有全局尋優(yōu)性能,對上述無約束優(yōu)化問題可以得到全局最優(yōu)解。當(dāng)然,其他的優(yōu)化算法同樣可以用于路徑規(guī)劃。 2.35基于神經(jīng)網(wǎng)絡(luò)的路徑規(guī)劃1.按照2.34的方法,轉(zhuǎn)化為優(yōu)化問題。2.用神經(jīng)網(wǎng)絡(luò)表示懲罰函數(shù)。3根據(jù)E遞減推導(dǎo)出相應(yīng)的反向傳播算法用于神經(jīng)網(wǎng)絡(luò)的訓(xùn)練.優(yōu)勢:神經(jīng)元可以并行計(jì)算 2.4人工勢場法基本原理障礙物對機(jī)器人施加排斥力,目標(biāo)點(diǎn)對機(jī)器人施加吸引力合力形成勢場,機(jī)器人移動(dòng)

5、就像球從山上滾下來一樣機(jī)器人在合力作用下向目標(biāo)點(diǎn)移動(dòng) 3.人工勢場法 3.1人工勢場法的基本原理(2.4) 3.2人工勢場法的實(shí)用算法 3.3人工勢場法的改進(jìn)算法 3.2人工勢場法的實(shí)用算法 3.21非點(diǎn)形障礙物問題普通的障礙物的形狀不是一個(gè)點(diǎn),如何確定一個(gè)障礙物對機(jī)器人的排斥力呢?方案1:計(jì)算障礙物內(nèi)所有點(diǎn)斥力的合力。方案2:用離障礙物最近的點(diǎn)進(jìn)行計(jì)算。方案3: 3.22死鎖(dead lock)現(xiàn)象(1)如何克服死鎖現(xiàn)象: 死鎖現(xiàn)象的實(shí)質(zhì)是落入局部極值,全局優(yōu)化算法可以避免落入局部極值。 3.22死鎖(dead lock)現(xiàn)象(2)避免死鎖的改進(jìn)算法: APF與隨機(jī)采樣相結(jié)合如RPP算法

6、APF與遺傳算法(GA)相結(jié)合 APF與其他全局優(yōu)化算法相結(jié)合:如:粒群算法,蟻群算法,模擬退火法,附加動(dòng)量法等。 3.23GNRON問題: 障礙物與目標(biāo)點(diǎn)過于接近引起斥力場和引力場同時(shí)存在而阻礙到達(dá)目標(biāo)點(diǎn)的現(xiàn)象。解決方案: 3.24移動(dòng)機(jī)器人為多面體的情況方案1:一般情況下,可以將機(jī)器人作為點(diǎn),適當(dāng)擴(kuò)大障礙物來進(jìn)行研究。方案2:對多面體每個(gè)頂點(diǎn)計(jì)算排斥力和吸引力,障礙物對機(jī)器人的排斥力是對所有頂點(diǎn)排斥力的合力。 3.3人工勢場法的改進(jìn)算法(1)主要是針對死鎖問題進(jìn)行改進(jìn)RPP算法(APF與隨機(jī)采樣相結(jié)合)的原理: 1.開始時(shí)執(zhí)行Descend模式 2.如果沒有出現(xiàn)死鎖則成功,否則執(zhí)行Esca

7、pe模式 3.如果Escape模式失敗,執(zhí)行Backtrack模式 3.3人工勢場法的改進(jìn)算法(2)一種APF與GA相結(jié)合的算法: 在基于GA的路徑規(guī)劃算法(2.34)中介紹了GA如何用于路徑規(guī)劃,但是這種算法存在著計(jì)算量(n) 與路徑規(guī)劃的質(zhì)量之間的矛盾。采用APF與GA結(jié)合的算法可以取較小的n獲得滿意的效果并且避免死鎖。 3.3人工勢場法的改進(jìn)算法(2) APF與GA相結(jié)合的算法原理:1.選取初始可行種群,每個(gè)種群中具有n-2個(gè)參數(shù)(xi, yi ) (2.34)。2. 每一個(gè)種群中,在相鄰兩個(gè)點(diǎn)(xi, yi )和(xi+1, yi+1 )之間利用APF得到一條連接這兩個(gè)點(diǎn)的無碰撞路徑。對于一個(gè)種群來說,就可以得到從起始點(diǎn)到目標(biāo)點(diǎn)的無碰撞路徑。3.計(jì)算每個(gè)種群對應(yīng)的路徑的長度作為適配度,對(xi, y i )進(jìn)行交叉、變異、選擇運(yùn)算得到新的n-2個(gè)參數(shù)。4.重復(fù)上述步驟直至結(jié)束。 3.3人工勢場法的改進(jìn)算法(2)交叉前:交叉后:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!