《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材7 概率與統(tǒng)計課件 文》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 第四篇 回歸教材7 概率與統(tǒng)計課件 文(42頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、7. 概率與統(tǒng)計,第四篇回歸教材,糾錯例析,幫你減少高考失分點,,欄目索引,,,要點回扣,1.隨機抽樣方法 簡單隨機抽樣、系統(tǒng)抽樣、分層抽樣的共同點是抽樣過程中每個個體被抽取的機會相等,且是不放回抽樣. 問題1某社區(qū)現(xiàn)有480個住戶,其中中等收入家庭200戶、低收入家庭160戶,其他為高收入家庭.在建設(shè)幸福社區(qū)的某次分層抽樣調(diào)查中,高收入家庭被抽取了6戶,則該社區(qū)本次抽取的總戶數(shù)為________.,解析答案,24,2.對于統(tǒng)計圖表問題,求解時,最重要的就是認真觀察圖表,從中提取有用信息和數(shù)據(jù).對于頻率分布直方圖,應(yīng)注意的是圖中的每一個小矩形的面積是數(shù)據(jù)落在該區(qū)間上的頻率.莖葉圖沒有原始數(shù)據(jù)信
2、息的損失,但數(shù)據(jù)很大或有多組數(shù)據(jù)時,莖葉圖就不那么直觀、清晰了.,問題2(2015湖南)在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示:,若將運動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間139,151上的運動員人數(shù)是________.,解析由題意知,將135號分成7組,每組5名運動員, 落在區(qū)間139,151的運動員共有4組, 故由系統(tǒng)抽樣法知,共抽取4名.,4,,解析答案,3.在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等,由此可以估計中位數(shù)的值.平均數(shù)的估計值等于頻率分布直方圖中每個小矩形的面積乘小矩形底邊中點的橫坐標之和,
3、眾數(shù)是最高矩形的中點的橫坐標.,問題3某公司為了解用戶對其產(chǎn)品 的滿意度,隨機調(diào)查了40個用戶,根 據(jù)用戶滿意度的評分制成頻率分布直方 圖(如右),則該地區(qū)滿意度評分的平均 值為________.,77.5,解析由直方圖估計評分的平均值為550.05650.2750.35850.25950.1577.5.,,解析答案,,答案,,5.互斥事件的概率公式P(AB)P(A)P(B) (1)公式適合范圍:事件A與B互斥.,答案,6.古典概型,問題6(2015廣東)已知5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,恰有一件次品的概率為() A.0.4 B.0.6 C.0.8 D.1,,,
4、,解析,解析記“點P到點O的距離大于1”為A,,問題7在棱長為2的正方體ABCDA1B1C1D1中,點O為底面ABCD的中心,在正方體ABCDA1B1C1D1內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為(),,,解析,返回,易錯點1抽樣方法理解不準,,例1一個總體中100個個體的編號為0,1,2,3,,99,并依次按其分為10個小組,組號為0,1,2,,9.要用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,規(guī)定如果第0組(號碼09)隨機抽取的號碼為l,那么依次錯位地抽取后面各組的號碼,即第k組中抽取的號碼的個位數(shù)為lk或lk10(如果lk10).若l6,則所抽取的第5組的號碼是________.
5、,易錯警示,易錯分析本題易錯點有兩個:一是忽視題中對組號的描述,誤以為第一個號碼6為第一組的號碼導(dǎo)致錯誤;二是忽視系統(tǒng)抽樣號碼抽樣法則的制定,誤以為組距為10,所以每組抽取號碼的個位數(shù)都為6.所以解決此類問題,一定要根據(jù)題中的條件準確進行編號與抽樣.,,解析,易錯分析,答案,51,解析由題意,第0組抽取的號碼為6,則第一組抽取的號碼的個位數(shù)為617,所以選17. 因為718,第二組抽取號碼的個位數(shù)為8,故選28. 因為819,第三組抽取號碼的個位數(shù)為9,故選39. 因為911010,91100,第四組抽取號碼的個位數(shù)為0,故選40. 因為011,第五組抽取號碼的個位數(shù)為1,故選51.,易錯點2
6、統(tǒng)計圖表識圖不清,易錯分析解本題容易出現(xiàn)的錯誤是審題不細,對所給圖形觀察不細心,認為員工中年薪在1.4萬元1.6萬元之間的頻率為1(0.020.080.10)20.60,從而得到員工中年薪在1.4萬元1.6萬元之間的共有3001(0.020.080.10)2180(人)的錯誤答案.,,例2如圖所示是某公司(共有員工300人)2016年員工年薪情況的頻率分布直方圖,由此可知,員工中年薪在1.4萬元1.6萬元之間的共有______人.,72,解析,易錯分析,答案,解析由所給圖形,可知員工中年薪在1.4萬元1.6萬元之間的頻率為1(0.020.080.080.100.10)20.24, 所以員工中年
7、薪在1.4萬元1.6萬元之間的共有3000.2472(人),易錯點3誤解基本事件的等可能性,例3若將一枚質(zhì)地均勻的骰子(一種各面上分別標有1,2,3,4,5,6個點的 正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和為4的概率為______.,易錯分析解本題時易出現(xiàn)的錯誤在于對等可能性事件的概率中“基本事件”以及“等可能性”等概念的理解不深刻,錯誤地認為基本事件總數(shù)為11(點數(shù)和等于2,3,4,5,6,7,8,9,10,11,12),或者將點數(shù)和為4的事件錯誤地計算為(1,3)(2,2)兩種,從而導(dǎo)致出錯.,,,解析,易錯分析,答案,,易錯點4幾何概型中“測度”確定不準,例4在等腰直角三角形AB
8、C中,直角頂點為C. (1)在斜邊AB上任取一點M,求AMAC的概率; (2)在ACB的內(nèi)部,以C為端點任作一條射線CM,與線段AB交于點M,求AMAC的概率.,易錯分析本題易出現(xiàn)的問題是混淆幾何概型中對事件的度量方式,不注意題中兩問中點M生成方式的差異,誤以為該題兩問中的幾何概型都是用線段的長度來度量造成錯解.,,解析答案,易錯分析,,(2)由于在ABC內(nèi)作射線CM,等可能分布的是CM在ACB內(nèi)的任一位置(如圖所示),因此基本事件的區(qū)域應(yīng)是ACB,,例5對飛機連續(xù)射擊兩次,每次發(fā)射一枚炮彈.設(shè)A兩次都擊中飛機,B兩次都沒擊中飛機,C恰有一次擊中飛機,D至少有一次擊中飛機,其中彼此互為互斥事件
9、的是___________________ ______;互為對立事件的是________.,易錯點5互斥事件概念不清,A與B,A與C,B與C,,,返回,解析,易錯分析,答案,易錯分析對事件互斥意義不明確,對事件的互斥與對立之間的關(guān)系不清楚,就會出現(xiàn)錯誤的判斷.對立事件和互斥事件都不可能同時發(fā)生,但對立事件必有一個要發(fā)生,而互斥事件可能都不發(fā)生.所以兩個事件對立,則兩個事件必是互斥事件;反之,兩事件是互斥事件,但未必是對立事件.,B與D,B與D,解析因為AB,AC,BC,BD, 故A與B,A與C,B與C,B與D為彼此互斥事件, 而BD,BD,故B與D互為對立事件.,,返回,1.某學(xué)校利用系統(tǒng)抽
10、樣的方法,從學(xué)校高三年級全體1 000名學(xué)生中抽50名學(xué)生做學(xué)習(xí)狀況問卷調(diào)查.現(xiàn)將1000名學(xué)生從1到1000進行編號,共分50組.在第一組中隨機抽取一個號,如果抽到的是17號,則第8組中應(yīng)取的號碼是() A.177 B.157C.417 D.367,,1,2,3,4,查缺補漏,,解析根據(jù)系統(tǒng)抽樣法的特點,可知抽取出的編號成首項為17,公差為20的等差數(shù)列,所以第8組的編號是17(81)20157.,,解析,5,6,7,8,9,10,2.如圖是2016年某大學(xué)自主招生面試環(huán)節(jié)中,七位評委為某考生打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和眾數(shù)依次為(),,解析由圖可
11、知,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)為84,84,84,86,87.,,解析,1,2,3,4,5,6,7,8,9,10,A.85,84 B.84,85 C.86,84 D.84,86,3.從正六邊形的6個頂點中隨機選擇4個頂點,則以它們作為頂點的四邊形是矩形的概率等于(),,,解析,1,2,3,4,5,6,7,8,9,10,,解析如圖所示,,1,2,3,4,5,6,7,8,9,10,,,解析,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,5.某路段檢查站監(jiān)控錄像顯示,在某時段內(nèi),有1 000輛汽車通過該站,現(xiàn)在隨機抽取其中的200輛汽車進行車速分析,
12、分析的結(jié)果表示為如圖所示的頻率分布直方圖,則估計在這一時段內(nèi)通過該站的汽車中車速不小于90 km/h的約有________輛.(注:分析時車速均取整數(shù)),,,解析,1,2,3,4,5,6,7,8,9,10,答案,300,解析由圖可知,車速大于等于90 km/h的車輛未標出頻率, 而小于90 km/h的都標出了, 故考慮對立事件.由題圖知車速小于90 km/h的汽車總數(shù)的頻率之和為(0.010.020.04)100.7, 所以車速不小于90 km/h的汽車總數(shù)的頻率之和為10.70.3. 因此在這一時段內(nèi)通過該站的車速不小于90 km/h的汽車有1 0000.3300(輛).,,,1,2,3,4
13、,5,6,7,8,9,10,6.春節(jié)期間,某銷售公司每天銷售某種取暖產(chǎn)品的銷售額y(單位:萬元)與當天的平均氣溫x(單位:)有關(guān).現(xiàn)收集了春節(jié)期間這個銷售公司4天的x與y的數(shù)據(jù)列于下表:,,1,2,3,4,5,6,7,8,9,10,解析,答案,1,2,3,4,5,6,7,8,9,10,7.如圖所示的莖葉圖是甲、乙兩位同學(xué)在期末考試中的六科成績,已知甲同學(xué)的平均成績?yōu)?5,乙同學(xué)的六科成績的眾數(shù)為84,則x,y的值分別為________,________.,解得x6,由題圖可知y4.,6 4,,解析答案,1,2,3,4,5,6,7,8,9,10,8.從2男3女共5名同學(xué)中任選2名(每名同學(xué)
14、被選中的機會均等),這2名都是男生或都是女生的概率為______.,,,,解析答案,1,2,3,4,5,6,7,8,9,10,9.已知直線l的方程為ax2y30,且a5,4,則直線l的斜率不小于1的概率為________.,,解析答案,1,2,3,4,5,6,7,8,9,10,因為a5,4,所以a5,2. 由幾何概型的概率計算公式可得所求概率為,10.甲、乙兩名騎手騎術(shù)相當,他們各自挑選3匹馬備用,甲挑選的三匹馬分別記為A,B,C,乙挑選的三匹馬分別記為A,B,C.已知6匹馬按奔跑速度從快到慢的排列順序依次為:A,A,B,B,C,C.比賽前甲、乙均不知道這個順序.規(guī)定:每人只能騎自己挑選的馬進
15、行比賽,且率先到達終點者獲勝. (1)若甲、乙二人進行一次比賽,求乙獲勝的概率;,,1,2,3,4,5,6,7,8,9,10,解析答案,解甲、乙二人選取的馬匹共有9種搭配方式,勝負情況如下表所示:,1,2,3,4,5,6,7,8,9,10,(2)若甲、乙二人進行三次比賽,且不能重復(fù)使用馬匹,求乙獲勝次數(shù)多于甲的概率.,,返回,1,2,3,4,5,6,7,8,9,10,解析答案,解根據(jù)題意乙分別騎A,B,C時,甲騎手的馬共有6種排列情況與之對應(yīng),如下表所示:,,1,2,3,4,5,6,7,8,9,10,解析答案,,返回,1,2,3,4,5,6,7,8,9,10,以上6種情況,只有兩種情況乙獲勝次數(shù)多于甲.,