《(浙江專版)2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測七 數(shù)列與數(shù)學(xué)歸納法單元檢測(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專版)2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測七 數(shù)列與數(shù)學(xué)歸納法單元檢測(含解析)(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、單元檢測七數(shù)列與數(shù)學(xué)歸納法(時(shí)間:120分鐘滿分:150分)第卷(選擇題共40分)一、選擇題(本大題共10小題,每小題4分,共40分在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1已知等差數(shù)列an的前n項(xiàng)和為Sn(nN*),若S2163,則a7a11a15等于()A6B9C12D15答案B解析設(shè)數(shù)列an的公差為d,則由S2163,得21a1210d63,即a110d3,所以a7a11a153a130d3(a110d)9,故選B.2已知正項(xiàng)等比數(shù)列an滿足(a1a2a3a4a5)0,且a6,則數(shù)列an的前9項(xiàng)和為()A7B8C7D8答案C解析由(a1a2a3a4a5)0,得a1a2a3a4
2、a5a1,所以a31.又a6,所以公比q,a14,故S947,故選C.3用數(shù)學(xué)歸納法證明等式123(n3)(nN*)時(shí),第一步驗(yàn)證n1時(shí),左邊應(yīng)取的項(xiàng)是()A1B12C123D1234答案D解析當(dāng)n1時(shí),左邊應(yīng)為12(13),即1234,故選D.4等差數(shù)列an的前n項(xiàng)和為Sn,S20180,S20190,且對任意正整數(shù)n都有|an|ak|,則正整數(shù)k的值為()A1008B1009C1010D1011答案C解析由S20190,得a10100,得a1009a10100,a1009a1010|a1010|.又d1010時(shí),|an|a1010|,n|a1010|,k1010.5用數(shù)學(xué)歸納法證明“(nN
3、*)”時(shí),由nk到nk1時(shí),不等式左邊應(yīng)添加的項(xiàng)是()A.B.C.D.答案C解析分別代入nk,nk1,兩式作差可得左邊應(yīng)添加項(xiàng)當(dāng)nk時(shí),左邊為,當(dāng)nk1時(shí),左邊為,所以增加項(xiàng)為兩式作差得,故選C.6設(shè)數(shù)列an的前n項(xiàng)和為Sn,且a11,2Snan11,則數(shù)列an的通項(xiàng)公式為()Aan3nBan3n1Can2nDan2n1答案B解析因?yàn)?Snan11,所以2a1a21,又a11,所以a23.由題知當(dāng)n2時(shí),2Sn1an1,所以2anan1an,易知an0,所以3(n2),當(dāng)n1時(shí),也符合此式,所以an是以1為首項(xiàng),3為公比的等比數(shù)列,所以an3n1(nN*),故選B.7已知數(shù)列an中,a1,且對
4、任意的nN*,都有an1成立,則a2020的值為()A1B.C.D.答案C解析由題得a1;a2;a3;a4,數(shù)列an為周期數(shù)列,且a1a3a5a2n1(nN*),a2a4a6a2n(nN*),所以a2020,故選C.8設(shè)數(shù)列an滿足a1,且對任意的nN*,都有an2an3n,an4an103n,則a2021等于()A.B.2C.D.2答案A解析因?yàn)閷θ我獾膎N*,滿足an2an3n,an4an103n,所以103n(an4an2)(an2an)3n23n103n,所以an4an103n.因?yàn)閍2021(a2021a2017)(a2017a2013)(a5a1)a110(32017320133)
5、10.9已知數(shù)列an的前n項(xiàng)和為Sn,a10,常數(shù)0,且a1anS1Sn對一切正整數(shù)n都成立,則數(shù)列an的通項(xiàng)公式為()A.B.C.D.答案A解析令n1,則a2S12a1,即a1(a12)0,因?yàn)閍10,所以a1,所以2anSn,當(dāng)n2時(shí),2an1Sn1,得2an2an1an,即an2an1(n2),所以an是以為首項(xiàng),2為公比的等比數(shù)列,所以an2n1(nN*),當(dāng)n1時(shí),也符合此式,故選A.10記f(n)為最接近(nN*)的整數(shù),如:f(1)1,f(2)1,f(3)2,f(4)2,f(5)2,.若4038,則正整數(shù)m的值為()A20182019B20192C20192020D2020202
6、1答案C解析設(shè)x,nN*,f(x)n,則nn,所以n2nx的最大正整數(shù)n為_答案2n5解析設(shè)等差數(shù)列an的公差為d,由已知可得解得故數(shù)列an的通項(xiàng)公式為an2n.Sna1,.得a111,所以Sn,由Sn,得0n5且nN*,故最大正整數(shù)n為5.16已知在首項(xiàng)都為2的數(shù)列an,bn中,a2b24,2an1anan2,bn1bn32n1,且bnZ,則bn_,數(shù)列的前n項(xiàng)和為_答案2n2n1解析由2an1anan2,知數(shù)列an是等差數(shù)列,因?yàn)閍12,a24,所以an的公差為2,所以an2n.由bn1bn2n,得bn2bn12n1,所以bn2bn32n1,且bnZ,所以bn2bn32n,又b12,b24
7、,當(dāng)n2k1(k2)時(shí),bn(bnbn2)(bn2bn4)(b3b1)b13(2n22n4232)23222k12n,n1時(shí)也成立;當(dāng)n2k(k2)時(shí),bn(bnbn2)(b4b2)b23(2n22n4244)44k2n,n2時(shí)也成立所以bn2n.所以2n1,則數(shù)列的前n項(xiàng)和為2n1.17若正項(xiàng)等比數(shù)列an滿足(a6a5a4)(a3a2a1)49,則a9a8a7的最小值為_答案196解析設(shè)正項(xiàng)等比數(shù)列an的公比為q,則(q31)(a3a2a1)49,顯然q310,所以a3a2a1,a9a8a749494196,當(dāng)且僅當(dāng)q31,即q32時(shí)等號(hào)成立,故a9a8a7的最小值為196.三、解答題(本大
8、題共5小題,共74分解答應(yīng)寫出文字說明,證明過程或演算步驟)18(14分)(2019杭州質(zhì)檢)已知數(shù)列an的前n項(xiàng)和為Sn,且滿足3Sn4an2(nN*)(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bnan,求數(shù)列的前n項(xiàng)和Tn.解(1)3Sn4an2,當(dāng)n2時(shí),3Sn14an12,得3an4(anan1),所以an4an1,即4.又3S14a12,所以a12,所以數(shù)列an是以2為首項(xiàng),4為公比的等比數(shù)列,所以an24n122n1(nN*)(2)因?yàn)閎nan22n112n,所以,所以Tn(nN*)19(15分)已知數(shù)列an的前n項(xiàng)和為Sn,且滿足Snn2an(nN*)(1)證明:數(shù)列an1為等比數(shù)列,
9、并求數(shù)列an的通項(xiàng)公式;(2)若bnn(an1),求數(shù)列bn的前n項(xiàng)和Tn.(1)證明當(dāng)n1時(shí),2a1S11,則a11.由題意得2anSnn,2an1Sn1(n1),兩式相減得2an12anan11,即an12an1.于是an112(an1),又a112,所以數(shù)列an1是以2為首項(xiàng),2為公比的等比數(shù)列所以an122n12n,即an2n1,nN*.(2)解由(1)知,bnn2n,所以Tn12222n2n,2Tn122223n2n1,兩式相減得Tn222232nn2n1n2n1(1n)2n12,所以Tn(n1)2n12.20(15分)已知等比數(shù)列an的公比為q(0q1),且a2a5,a3a4.(1
10、)求數(shù)列an的通項(xiàng)公式;(2)若bnan(log2an),求bn的前n項(xiàng)和Tn;(3)設(shè)該等比數(shù)列an的前n項(xiàng)和為Sn,正整數(shù)m,n滿足,求出所有符合條件的m,n的值解(1)方法一由已知得解得ann2,nN*.方法二由等比數(shù)列的性質(zhì),知a2a5a3a4,a2a5,a2,a5是x2x0的兩個(gè)根,0qa5,a21,a5,又a5a2q3,q,ana2qn21n2n2,nN*.(2)由(1)可得,bn(2n),Tn10(1)(2n),Tn10(3n)(2n),兩式相減得Tn2(n2)2(n2),Tn,nN*.(3)Sn4,由,得22n(4m)0,由,得,.(2)由(1)得(n1)an2nan,.令bnnan,則bnbn1nan(n1)an1n1,當(dāng)n2時(shí),bn1bnn,由b1a11,b22,易得bn0,由,得bn1bn1(n2)b1b3b2n1,b2b4b2n,得bn1.根據(jù)bnbn1n1得bn1n1,1bnn,(b3b1)(b4b2)(bnbn2)(bn1bn1)bnbn1b1b2bnbn12.一方面,bnbn12222(1),當(dāng)且僅當(dāng)bnbn1時(shí)取等號(hào),另一方面,由1bnn可知bnbn12bn2maxn.故2(1)n.12