2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版

上傳人:Sc****h 文檔編號(hào):116722639 上傳時(shí)間:2022-07-06 格式:DOC 頁(yè)數(shù):6 大?。?64.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第1頁(yè)
第1頁(yè) / 共6頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第2頁(yè)
第2頁(yè) / 共6頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 基礎(chǔ)鞏固組 1.已知曲線C:=1,直線l:(t為參數(shù)). (1)寫出曲線C的參數(shù)方程,直線l的普通方程; (2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值. 2.(2019屆廣東珠海9月摸底,22)在直角坐標(biāo)系xOy中,直線l過(guò)定點(diǎn)P(1,-)且與直線OP垂直.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ-2cos θ=0. (1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程; (2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求的值.

2、 3.(2018河南一模,22)在直角坐標(biāo)系xOy中,已知直線l1:(t為參數(shù)),l2:(t為參數(shù)),其中α∈0,,以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-4cos θ=0. (1)寫出l1,l2的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程; (2)設(shè)l1,l2分別與曲線C交于點(diǎn)A,B非坐標(biāo)原點(diǎn),求|AB|的值. 4.(2018江西師大附中三模,22)在直角坐標(biāo)系xOy中,曲線C1:(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l:ρsin(α-θ)=2sin α.其中α為直線l的傾斜角(α≠

3、0) (1)求曲線C1的普通方程和直線l的直角坐標(biāo)方程; (2)直線l與x軸的交點(diǎn)為M,與曲線C1的交點(diǎn)分別為A,B,求|MA|·|MB|的值. 5.(2018湖北5月沖刺,22)在直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)P(,0),傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin θ. (1)求直線l的參數(shù)方程; (2)若A點(diǎn)在直線l上,B點(diǎn)在曲線C上,求|AB|的最小值. 6.(2018河南鄭州摸底)以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P

4、的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為4,,若直線l過(guò)點(diǎn)P,且傾斜角為,圓C以M為圓心,4為半徑. (1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程; (2)試判定直線l圓C的位置關(guān)系. 綜合提升組 7.(2018廣西欽州第三次質(zhì)檢,22)在平面直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)P(-3,0),其傾斜角為α,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-2ρcos θ-3=0. (1)若直線l與曲線C有公共點(diǎn),求傾斜角α的取值范圍; (2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

5、 8.(2018重慶西南大學(xué)附中模擬)已知平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(-1,-2)的直線l的參數(shù)方程為(t為參數(shù)),l與y軸交于點(diǎn)A,以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρsin2θ=mcos θ(m>0),直線l與曲線C交于M、N兩點(diǎn). (1)求曲線C的直角坐標(biāo)方程和點(diǎn)A的一個(gè)極坐標(biāo); (2)若=3,求實(shí)數(shù)m的值. 創(chuàng)新應(yīng)用組 9.(2018河北衡水中學(xué)押題一)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為

6、ρ=4cos θ,直線l與圓C交于A,B兩點(diǎn). (1)求圓C的直角坐標(biāo)方程及弦AB的長(zhǎng); (2)動(dòng)點(diǎn)P在圓C上(不與A,B重合),試求△ABP的面積的最大值. 10.(2018湖南長(zhǎng)沙模擬二)在直角坐標(biāo)系xOy中,直線l的方程是x=2,曲線C的參數(shù)方程為(α為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (1)求直線l和曲線C的極坐標(biāo)方程; (2)射線OM:θ=β其中0<β≤與曲線C交于O,P兩點(diǎn),與直線l交于點(diǎn)M,求的取值范圍. 課時(shí)規(guī)范練54 坐標(biāo)系與參數(shù)方程 1.解 (1)曲線C的參數(shù)方程為(θ為參數(shù)).

7、直線l的普通方程為2x+y-6=0. (2)曲線C上任意一點(diǎn)P(2cos θ,3sin θ)到直線l的距離為d=|4cos θ+3sin θ-6|, 則|PA|=|5sin(θ+α)-6|,其中α為銳角,且tan α=. 當(dāng)sin(θ+α)=-1時(shí),|PA|取得最大值,最大值為. 當(dāng)sin(θ+α)=1時(shí),|PA|取得最小值,最小值為. 2.解 (1)曲線C的直角坐標(biāo)方程為y2=2x, 直線l的參數(shù)方程為 (t為參數(shù)). (2)設(shè)點(diǎn)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2, 將直線l與曲線C的方程聯(lián)立得t2-8t+4=0,(*) 可知t1,t2是(*)式的兩根, 則 故t1、t

8、2同正. ====2. 3.解 (1)l1,l2的極坐標(biāo)方程為θ1=α(ρ∈R),θ2=α+ (ρ∈R). 曲線C的極坐標(biāo)方程為ρ-4cos θ=0,即為ρ2-4ρcos θ=0, 利用ρ2=x2+y2,x=ρcos θ, 得曲線C的直角坐標(biāo)方程為(x-2)2+y2=4. (2)因?yàn)棣?=4cos α,ρ2=4cosα+, 所以|AB|2=-2ρ1ρ2cos=16cos2α+cos2α+-cos αcosα+ =16cos2 α+(cos α-sin α)2-cos α(cos α-sin α)=8, 所以|AB|的值為2. 4.解 (1)曲線C1的普通方程為(x-1)2+

9、y2=4, 直線l的直角坐標(biāo)方程為xsin α-ycos α=2sin α. (2)直線l與x軸的交點(diǎn)為M(2,0),直線l的參數(shù)方程可設(shè)為(t為參數(shù)),將直線l的參數(shù)方程代入圓C1的方程(x-1)2+y2=4, 得t2+2tcos α-3=0, 故|MA|·|MB|=|t1·t2|=3. 5.解 (1)直線l的參數(shù)方程為 (t為參數(shù)), 即(t為參數(shù)). (2)由 得x-y-3=0. 由ρ=2sin θ 得ρ2=2ρsin θ,即x2+y2-2y=0, 即x2+(y-1)2=1. 所以曲線C是以點(diǎn)Q(0,1)為圓心,1為半徑的圓. 又點(diǎn)Q到直線l:x-y-3=0的

10、距離為d==2. 故|AB|的最小值為2-1=1. 6.解 (1)直線l的參數(shù)方程為(t為參數(shù)), 則(t為參數(shù)),M點(diǎn)的直角坐標(biāo)為(0,4), 圓C的方程為x2+(y-4)2=16,且 代入得圓C極坐標(biāo)方程為ρ=8sin θ. (2)直線l的普通方程為x-y-5-=0, 圓心M到直線l的距離為d=>4, ∴直線l與圓C相離. 7.解 (1)將曲線C的極坐標(biāo)方程ρ2-2ρcos θ-3=0化為直角坐標(biāo)方程為x2+y2-2x-3=0,直線l的參數(shù)方程為(t為參數(shù)), 將參數(shù)方程代入x2+y2-2x-3=0,整理得t2-8tcos α+12=0. ∵直線l與曲線C有公共點(diǎn),

11、 ∴Δ=64cos2α-48≥0, ∴cos α≥,或cos α≤-. ∵α∈[0,π), ∴α的取值范圍是0,∪,π. (2)曲線C的方程x2+y2-2x-3=0可化為(x-1)2+y2=4, 其參數(shù)方程為(θ為參數(shù)), ∵M(jìn)(x,y)為曲線上任意一點(diǎn), ∴x+y=1+2cos θ+2sin θ=1+2sinθ+, ∴x+y的取值范圍是[1-2,1+2 ]. 8.解 (1)∵ρsin2θ=mcos θ,∴ρ2sin2θ=mρcos θ, ∴y2=mx(m>0), A點(diǎn)坐標(biāo)為(0,1), 其一個(gè)極坐標(biāo)為A1,π. (2)將代入y2=mx,得t2-(4+m)t+m+4=

12、0. ∵=3,∴t1=3t2. ∴∴m=. 9.解 (1)由ρ=4cosθ得ρ2=4ρcos θ, 所以x2+y2-4x=0,所以圓C的直角坐標(biāo)方程為(x-2)2+y2=4. 將直線l的參數(shù)方程代入圓C:(x-2)2+y2=4,并整理得t2+2t=0, 解得t1=0,t2=-2. 所以直線l被圓C截得的弦長(zhǎng)為|t1-t2|=2. (2)直線l的普通方程為x-y-4=0. 圓C的參數(shù)方程為 (θ為參數(shù)), 可設(shè)圓C上的動(dòng)點(diǎn)P(2+2cos θ,2sin θ), 則點(diǎn)P到直線l的距離d==2cosθ+-. 當(dāng)cosθ+=-1時(shí),d取最大值,且d的最大值為2+. 所以S△ABP≤×2×(2+)=2+2. 即△ABP的面積的最大值為2+2. 10.解 (1)∵ ∴直線l的極坐標(biāo)方程是ρcos θ=2, 由消參數(shù)得x2+(y-2)2=4, ∴曲線C的極坐標(biāo)方程是 ρ=4sin θ. (2)將θ=β分別代入ρ=4sin θ,ρcos θ=2,得|OP|=4sin β,|OM|=, ∴sin 2β. ∵0<β≤,∴0<2β≤, ∴0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!