2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)

上傳人:Sc****h 文檔編號:100992147 上傳時間:2022-06-04 格式:DOCX 頁數(shù):28 大?。?.42MB
收藏 版權(quán)申訴 舉報 下載
2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)_第1頁
第1頁 / 共28頁
2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)_第2頁
第2頁 / 共28頁
2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2019年高考物理備考 優(yōu)生百日闖關(guān)系列 專題04 曲線運(yùn)動(含解析)(28頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題04 牛頓運(yùn)動定律 第一部分名師綜述 曲線運(yùn)動是高考的熱點(diǎn)內(nèi)容,有時為選擇題,有時以計(jì)算題形式出現(xiàn),重點(diǎn)考查的內(nèi)容有:平拋運(yùn)動的規(guī)律及其研究方法,圓周運(yùn)動的角度、線速度、向心加速度,做圓周運(yùn)動的物體的受力與運(yùn)動的關(guān)系,同時,還可以與帶電粒子的電磁場的運(yùn)動等知識進(jìn)行綜合考查;重點(diǎn)考查的方法有運(yùn)動的合成與分解,豎直平面內(nèi)的圓周運(yùn)動應(yīng)掌握最高點(diǎn)和最低點(diǎn)的處理方法。 第二部分精選試題 一、單選題 1.如圖所示,A、B、C 是水平面上同一直線上的三點(diǎn),其中 AB=BC,在 A 點(diǎn)正上方的 O 點(diǎn)以初速度 v0水平拋出一小球,剛好落在 B 點(diǎn),小球運(yùn)動的軌跡與 OC 的連線交于 D 點(diǎn),不

2、計(jì)空氣阻力,重力加速度為g,下列說法正確的是( ) A.小球從O 到D 點(diǎn)的水平位移是從O 到B 點(diǎn)水平位移的 1:3 B.小球經(jīng)過D 點(diǎn)與落在B 點(diǎn)時重力瞬時功率的比為 2:3 C.小球從O 到D 點(diǎn)與從D 到 B 點(diǎn)兩段過程中重力做功的比為 1/3 D.小球經(jīng)過D 點(diǎn)時速度與水平方向夾角的正切值是落到B 點(diǎn)時速度與水平方向夾角的正切值的 1/4 【答案】 C 【解析】 【詳解】 A.設(shè)小球做平拋運(yùn)動的時間為t,位移為L,則有:Lcosθ=v0t;Lsinθ=12gt2,聯(lián)立解得:t=2v0tanθg,設(shè)∠OBA=α,∠C=β,則tanα=hAB,tanβ=hAC,

3、由于AB=BC,可知tanα=2 tanβ,因在D點(diǎn)時:tD=2v0tanβg,在B點(diǎn)時:tB=2v0tanαg,則落到D點(diǎn)所用時間是落到B點(diǎn)所用時間的12,即小球經(jīng)過D點(diǎn)的水平位移是落到B點(diǎn)水平位移的12,故A錯誤; B.由于落到D點(diǎn)所用時間是落到B點(diǎn)所用時間的12,故D點(diǎn)和B點(diǎn)豎直方向的速度之比為1:2,故小球經(jīng)過D點(diǎn)與落在B點(diǎn)時重力瞬時功率的比為12,故B錯誤; C.小球從O 到D 點(diǎn)與從D 到 B 點(diǎn)兩段過程中時間相等,則豎直位移之比為1:3,則重力做功的比為1:3,選項(xiàng)C正確; D.小球的速度與水平方向的夾角tanθ=gtv0,故小球經(jīng)過D點(diǎn)時速度與水平方向夾角的正切值是落到B

4、點(diǎn)時速度與水平方向夾角的正切值的12,故選項(xiàng)D錯誤; 2.如圖所示,B為半徑為R的豎直光滑圓弧的左端點(diǎn),B點(diǎn)和圓心C連線與豎直方向的夾角為α,—個質(zhì)量為m的小球在圓弧軌道左側(cè)的A點(diǎn)以水平速度v0拋出,恰好沿圓弧在B點(diǎn)的切線方向進(jìn)入圓弧軌道,已知重力加速度為g,下列說法正確的是() A.AB連線與水平方向夾角為α B.小球從A運(yùn)動到B的時間t=v0tanαg C.小球運(yùn)動到B點(diǎn)時,重力的瞬時功率P=mgv0cosθ D.小球運(yùn)動到豎直圓弧軌道的最低點(diǎn)時,處于失重狀態(tài) 【答案】 B 【解析】 【詳解】 AB、平拋運(yùn)動水平方向?yàn)閯蛩僦本€運(yùn)動,豎直方向?yàn)樽杂陕潴w運(yùn)動,小球恰好

5、沿B點(diǎn)的切線方向進(jìn)入圓軌道,說明小球在B點(diǎn)時,合速度方向沿著圓軌道的切線方向。將合速度正交分解,根據(jù)幾何關(guān)系可得,其與水平方向的夾角為α,則tanα=gtv0,解得:t=v0tanαg此時AB位移的連線與水平方向的夾角不等于α,故A錯;B對 C、小球運(yùn)動到B點(diǎn)時,重力的瞬時功率P=mgvy=mgv0tanα,故C錯; D、小球運(yùn)動到豎直圓弧軌道的最低點(diǎn)時,有向上的加速度,所以處于超重狀態(tài),故D錯; 故選B 3.質(zhì)量為m 的小球由輕繩a 和b 分別系于一輕質(zhì)細(xì)桿的A 點(diǎn)和B 點(diǎn),如圖所示,繩a 與水平方向成θ角,繩b 在水平方向且長為l,當(dāng)輕桿繞軸AB 以角速度ω勻速轉(zhuǎn)動時,小球在水平面

6、內(nèi)做勻速圓周運(yùn)動,則下列說法正確的是() A.a(chǎn) 繩的張力可能為零 B.a(chǎn) 繩的張力隨角速度的增大而增大 C.若b 繩突然被剪斷,則a 繩的彈力一定發(fā)生變化 D.當(dāng)角速度ω>gltanθ,b 繩將出現(xiàn)彈力 【答案】 D 【解析】 【詳解】 A、小球做勻速圓周運(yùn)動,在豎直方向上的合力為零,水平方向上的合力提供向心力,所以a繩在豎直方向上的分力與重力相等,可知a繩的張力不可能為零,故A錯; B、根據(jù)豎直方向上平衡得,F(xiàn)asinθ=mg,解得Fa=mgsinθ,可知a繩的拉力不變,故B錯誤。 D、當(dāng)b繩拉力為零時,有:mgcotθ=mω2l,解得ω=gltanθ,可知當(dāng)角

7、速度ω>gltanθ,b繩將出現(xiàn)彈力,故D對; C、由于b繩可能沒有彈力,故b繩突然被剪斷,a繩的彈力可能不變,故C錯誤 故選D 【點(diǎn)睛】 小球做勻速圓周運(yùn)動,在豎直方向上的合力為零,水平方向上的合力提供向心力,所以a繩在豎直方向上的分力與重力相等,可知a繩的張力不可能為零;由于b繩可能沒有彈力,故b繩突然被剪斷,a繩的彈力可能不變。 4.如圖所示,用一根長桿和兩個定滑輪的組合裝置來提升重物 M,長桿的一端放在地面上通過鉸鏈連接形成轉(zhuǎn)軸,其端點(diǎn)恰好處于左側(cè)滑輪正下方 0 點(diǎn)處,在桿的中點(diǎn) C 處拴一細(xì)繩,通過兩個滑輪后掛上重物 M,C 點(diǎn)與 o 點(diǎn)距離為 L,現(xiàn)在桿的另一端用力,使其

8、逆時針勻速轉(zhuǎn)動,由豎直位置以角速度 ω 緩緩轉(zhuǎn)至水平(轉(zhuǎn)過了 90°角).下列有關(guān)此過程的說法中正確的是() A.重物 M 做勻速直線運(yùn)動 B.重物 M 做勻變速直線運(yùn)動 C.整個過程中重物一直處于失重狀態(tài) D.重物 M 的速度先增大后減小,最大速度為wL 【答案】 D 【解析】 【詳解】 設(shè)C點(diǎn)線速度方向與繩子沿線的夾角為θ(銳角),由題知C點(diǎn)的線速度為vC=ωL,該線速度在繩子方向上的分速度就為v繩=ωLcosθ.θ的變化規(guī)律是開始最大(90°)然后逐漸變小,所以,v繩=ωLcosθ逐漸變大,直至繩子和桿垂直,θ變?yōu)榱愣龋K子的速度變?yōu)樽畲?,為ωL;然后,θ又逐漸增

9、大,v繩=ωLcosθ逐漸變小,繩子的速度變慢。所以知重物M的速度先增大后減小,最大速度為ωL.故AB錯誤,D正確。重物M先向上加速,后向上減速,加速度先向上,后向下,重物M先超重后失重,故C錯誤。故選D。 【點(diǎn)睛】 解決本題的關(guān)鍵掌握運(yùn)動的合成與分解,把C點(diǎn)的速度分解為沿繩子方向和垂直于繩子的方向,在沿繩子方向的分速度等于重物的速度. 5.質(zhì)量為m=0.10 kg的小鋼球以v0=10 m/s的水平速度拋出,下落h=5.0 m時撞擊一鋼板,如圖所示,撞后速度恰好反向,且速度大小不變,已知小鋼球與鋼板作用時間極短,取g=10 m/s2,則 A.鋼板與水平面的夾角θ=60° B.小鋼

10、球從水平拋出到剛要撞擊鋼板的過程中重力的沖量為2 N·s C.小鋼球剛要撞擊鋼板時小球動量的大小為10 kg·m/s D.鋼板對小鋼球的沖量大小為22 N·s 【答案】 D 【解析】 【詳解】 A、由于小球下落過程中在豎直方向有:h=12gt2 解得t=1s 故落到鋼板上時小球在豎直方向的速度vy=gt=10m/s, 則有tanθ=v0vy=1010=1, 即θ=45° 撞后速度恰好反向,且速度大小不變,則表示速度恰好與鋼板垂直,所以鋼板與水平面的夾角θ=45°,故A錯誤; B、根據(jù)沖量的定義知:重力沖量mgt=1N·s,選項(xiàng)B錯誤; C、小球落到鋼板上時的速度:

11、 v=v02+vy2=102m/s 故小球的動量大小:P=mv=0.1×102=2kg?m/s選項(xiàng)C錯誤 小球原速率返回,所以返回的速度仍然為102 規(guī)定小球撞前的速度方向?yàn)檎较?,由動量定理可知? I=-mv-mv=-2mv=-2×0.1×102=-22N?t 所以鋼板對小鋼球的沖量大小為22N?t故D 對 綜上所述本題答案是:D 【點(diǎn)睛】 小球在豎直方向做自由落體運(yùn)動,已知高度求出時間,然后求出豎直方向的速度大小,由水平方向和豎直方向的速度即可求得傾角的大小;由運(yùn)動時間和質(zhì)量,根據(jù)p=mgt即可求出重力沖量;已知豎直方向速度的大小,再根據(jù)水平速度的大小求出合速度的大小,根

12、據(jù)p=-mv求撞擊時動量的大小;算出撞后的動量,根據(jù)動量定律求小鋼球的沖量,據(jù)此解答。 6.如圖所示,兩質(zhì)量均為m的小球1、2(可視為質(zhì)點(diǎn))用一輕質(zhì)桿相連并置于圖示位置,質(zhì)量也為m的小球3置于水平面OB上,半圓光滑軌道與水平面相切于B點(diǎn)。由于擾動,小球1、2分別沿AO、OB開始運(yùn)動,當(dāng)小球1下落h=0.2 m時,桿與豎直墻壁夾角θ=37°,此時小球2剛好與小球3相碰,碰后小球3獲得的速度大小是碰前小球2速度大小的54,并且小球3恰好能通過半圓軌道的最高點(diǎn)C,取g=10 m/s2,cos 37°=0.8,sin 37°=0.6,一切摩擦不計(jì),則(  ) A.小球1在下落過程中機(jī)械能守恒

13、 B.小球2與小球3相碰時,小球1的速度大小為1.6 m/s C.小球2與小球3相碰前,小球1的平均速度大于小球2的平均速度 D.半圓軌道半徑大小為R=0.08 m 【答案】 D 【解析】 【詳解】 小球1與2連在一起,小球1向下運(yùn)動的過程中小球2將向右運(yùn)動,小球1的重力勢能減小,小球2的重力勢能不變,兩個球的動能都增大。由于對1和2球只有重力做功,兩個球組成的系統(tǒng)的機(jī)械能守恒,但1的機(jī)械能不守恒。故A錯誤;小球1下落h=0.2m時,桿與豎直墻壁夾角θ=37°,將兩個小球的速度分解如圖: 設(shè)當(dāng)小球1下落h=0.2m時小球1的速度是v1,小球2的速度是v2,由圖中幾何關(guān)系,

14、則:v1cos37°=v2sin37°;由機(jī)械能守恒得:12mv12+12mv22=mgh;聯(lián)立得:v1=1.2m/s,v2=1.6m/s。故B錯誤;設(shè)桿的長度為L,由幾何關(guān)系可得:L-Lcos37°=h,代入數(shù)據(jù)得:L=1.0m,所以小球2到O點(diǎn)的距離:x2=Lsin37°=1.0×0.6=0.6m;由于兩個小球運(yùn)動的時間相等,而小球2的位移大小大于小球1的位移的大小,所以小球2與小球3相碰前,小球1的平均速度小于小球2的平均速度。故C錯誤;碰后小球3獲得的速度大小是碰前小球2速度的54,所以碰撞后小球3的速度:v3=54×1.6=2m/s;小球3恰好能通過半圓軌道的最高點(diǎn)C,此時的重力提供

15、向心力,所以:mg=mvc2R;小球3從B到C的過程中機(jī)械能守恒,則:12mv32=mg?2R+12mvc2;聯(lián)立以上方程得:R=0.08m。故D正確。故選D。 【點(diǎn)睛】 該題考查速度的合成與分解、機(jī)械能守恒定律與牛頓第二定律的應(yīng)用,注意機(jī)械能守恒的判定,掌握幾何關(guān)系的運(yùn)用,正確找出小球1與2的速度關(guān)系是解答的關(guān)鍵。 7.一艘小船要從O點(diǎn)渡過一條兩岸平行、寬度為d=100 m的河流,已知河水流速為v1=4 m/s,小船在靜水中的速度為v2=2 m/s,B點(diǎn)距正對岸的A點(diǎn)x0=173 m.下面關(guān)于該船渡河的判斷,其中正確的是( ?。? A.小船過河的最短航程為100 m B.小船過河

16、的最短時間為25 s C.小船可以在對岸A、B兩點(diǎn)間任意一點(diǎn)靠岸 D.小船過河的最短航程為200 m 【答案】 D 【解析】 因?yàn)樗魉俣却笥陟o水速度,所以合速度的方向不可能垂直河岸,則小船不可能到達(dá)正對岸。當(dāng)合速度的方向與相對水的速度的方向垂直時,合速度的方向與河岸的夾角最短,渡河航程最小; 根據(jù)幾何關(guān)系,則有:ds=v2v1,因此最短的航程是:s=v1v2d=42×100=200m,故AC錯誤,D正確;當(dāng)靜水速的方向與河岸垂直時,渡河時間最短,最短時間:t=dv2=1002=50s,故B錯誤;故選D。 點(diǎn)睛:解決本題的關(guān)鍵知道當(dāng)靜水速與河岸垂直時,渡河時間最短,當(dāng)靜水

17、速大于水流速,合速度與河岸垂直,渡河航程最短,當(dāng)靜水速小于水流速,合速度與靜水速垂直,渡河航程最短. 8.如圖所示,卡車通過定滑輪以恒定的功率P0拉繩,牽引河中的小船沿水面運(yùn)動,已知小船的質(zhì)量為m,沿水面運(yùn)動時所受的阻力為f且保持不變,當(dāng)繩AO段與水面的夾角為θ時,小船的速度為v,不計(jì)繩子與滑輪間的摩擦,則此時小船的加速度等于(  ) A.P0mv-fm B.P0mvcos2θ-fm C.fm D.P0mv 【答案】 A 【解析】 【詳解】 小船的實(shí)際運(yùn)動為合運(yùn)動,可將小船的運(yùn)動分解為沿繩子方向和垂直繩子方向,如圖: 則v車=vcosθ,卡車通過定滑輪以恒定的功

18、率P0拉繩,繩中拉力F=P0v車=P0vcosθ;對船受力分析如圖: 根據(jù)牛頓第二定律可得:Fcosθ-Ff=ma,解得:a=P0mv-Ffm。故A項(xiàng)正確,BCD錯誤。故選A. 9.在一斜面頂端,將質(zhì)量相等的甲乙兩個小球分別以v和v2的速度沿同一方向水平拋出,兩球都落在該斜面上。甲球落至斜面時的動能與乙球落至斜面時的動能之比為() A.2:1 B.4:1 C.6:1 D.8:1 【答案】 B 【解析】 【分析】 根據(jù)平拋運(yùn)動的推論tanθ=2tanα得到甲、乙兩個小球落在斜面上時速度偏向角相等,根據(jù)運(yùn)動的合成與分解求出末速度即可解題。 【詳解】 設(shè)斜

19、面傾角為α,小球落在斜面上速度方向偏向角為θ,甲球以速度v拋出,落在斜面上,如圖所示: 根據(jù)平拋運(yùn)動的推論可得tanθ=2tanα,所以甲乙兩個小球落在斜面上時速度偏向角相等;對甲有:v1=vcosθ,對乙有:v2=v2cosθ,聯(lián)立可得:v1v2=21。 由于甲乙兩球質(zhì)量相等。所以動能之比等于四度之比的平方,故B正確, ACD錯誤。 【點(diǎn)睛】 本題主要是考查了平拋運(yùn)動的規(guī)律,知道平拋運(yùn)動可以分解為水平方向的勻速直線運(yùn)動和豎直方向的自由落體運(yùn)動。 10.如圖,在繞地運(yùn)行的天宮一號實(shí)驗(yàn)艙中,宇航員王亞平將支架固定在桌面上,擺軸末端用細(xì)繩連接一小球.拉直細(xì)繩并給小球一個垂直細(xì)繩的初速

20、度,它沿bdac做圓周運(yùn)動.在a、b、c、d四點(diǎn)時(d、c兩點(diǎn)與圓心等高),設(shè)在天宮一號實(shí)驗(yàn)艙中測量小球動能分別為Eka、Ekb、Ekc、Ekd,細(xì)繩拉力大小分別為Ta、Tb、Tc、Td,阻力不計(jì),則() A.Eka>Ekc=Ekd>Ekb B.若在c點(diǎn)繩子突然斷裂,王亞平看到小球做豎直上拋運(yùn)動 C.Ta=Tb=Tc=Td D.若在b點(diǎn)繩子突然斷裂,王亞平看到小球做平拋運(yùn)動 【答案】 C 【解析】 AC:在繞地運(yùn)行的天宮一號實(shí)驗(yàn)艙中,小球處于完全失重狀態(tài),由繩子的拉力提供向心力,小球做勻速圓周運(yùn)動,則有Eka=Ekb=Ekc=Ekd.完全失重時,只有繩的拉力提供向心力公式

21、T=mv2r,v、r、m都不變,小球的向心力大小不變,則有:Ta=Tb=Tc=Td.故A項(xiàng)錯誤,C項(xiàng)正確。 BD:在b點(diǎn)或c點(diǎn)繩斷,小球只有沿著圓周的切線方向的速度,沒有力提供向心力,做離心運(yùn)動且沿切線方向做勻速直線運(yùn)動。故BD兩項(xiàng)均錯誤。 點(diǎn)睛:解答本題要抓住小球處于完全失重狀態(tài),由繩子的拉力提供向心力,再根據(jù)向心力公式分析即可。 二、多選題 11.如圖甲所示,一滑塊隨足夠長的水平傳送帶一起向右勻速運(yùn)動,滑塊與傳送帶之間的動摩擦因數(shù)μ=0.2。質(zhì)量m=0.05kg的子彈水平向左射入滑塊并留在其中,取水平向左的方向?yàn)檎较颍訌椩谡麄€運(yùn)動過程中的v-t圖象如圖乙所示,已知傳送帶的速

22、度始終保持不變,滑塊最后恰好能從傳送帶的右端水平飛出,g取10m/s2。則 A.傳送帶的速度大小為4m/s B.滑塊的質(zhì)量為3.3kg C.滑塊向左運(yùn)動過程中與傳送帶摩擦產(chǎn)生的熱量為26.8J D.若滑塊可視為質(zhì)點(diǎn)且傳送帶與轉(zhuǎn)動輪間不打滑,則轉(zhuǎn)動輪的半徑R為0.4m 【答案】 BD 【解析】 【分析】 根據(jù)題中“子彈水平向左射入滑塊并留在其中”、“水平傳送帶”可知,本題考察動量守恒與傳送帶相結(jié)合的問題,應(yīng)用動量守恒定律、牛頓第二定律、摩擦生熱等知識分析計(jì)算。 【詳解】 A:子彈射入滑塊并留在其中,滑塊(含子彈)先向左做減速運(yùn)動,然后向右加速,最后向右勻速,向右勻速的

23、速度大小為2m/s,則傳送帶的速度大小為2m/s。故A項(xiàng)錯誤。 B:子彈未射入滑塊前,滑塊向右的速度大小為2m/s,子彈射入滑塊瞬間,子彈和滑塊的速度變?yōu)橄蜃蟮?m/s;子彈射入滑塊瞬間,內(nèi)力遠(yuǎn)大于外力,系統(tǒng)動量守恒,以向左為正,據(jù)動量守恒得,mv0+M(-v)=(m+M)v1,即400m+M(-2)=4(m+M),解得:滑塊的質(zhì)量M=66m=3.3kg。故B項(xiàng)正確。 C:滑塊(含子彈)先向左做減速運(yùn)動時,據(jù)牛頓第二定律可得,μ(M+m)g=(M+m)a,解得:滑塊向左運(yùn)動的加速度大小a=2m/s2?;瑝K(含子彈)向左減速運(yùn)動的時間t1=v1a=2s,滑塊(含子彈)向左減速運(yùn)動過程中滑塊與

24、傳送帶間的相對運(yùn)動距離s=v1+02t1+vt1=8m,滑塊向左運(yùn)動過程中與傳送帶摩擦產(chǎn)生的熱量Q=μ(M+m)gs=0.2×3.35×10×8J=53.6J。故C項(xiàng)錯誤。 D:滑塊最后恰好能從傳送帶的右端水平飛出,則(m+M)g=(m+M)v2R,解得:轉(zhuǎn)動輪的半徑R=0.4m。故D項(xiàng)正確。 12.如圖所示,河寬為d,一小船從A碼頭出發(fā)渡河,小船船頭垂直河岸,小船劃水速度大小不變?yōu)関1,河水中各點(diǎn)水流速度大小與各點(diǎn)到較近河岸的距離x成正比,即ν2=kx(x≤d2,k為常量),要使小船能夠到達(dá)距A正對岸為s的B碼頭,則( ?。? A.v1應(yīng)為kd24s B.小船渡河的軌跡是直線 C.

25、渡河時間為4skd D.渡河路程大于d2+s2 【答案】 ACD 【解析】 【詳解】 將小船的運(yùn)動分解為沿河岸方向和垂直河岸方向,小船在沿河岸方向的速度隨時間先均勻增大后均勻減小,前s/2和后s/2內(nèi)的平均速度為0+12kd2=kd4,則渡河的時間t=2×s2kd4=4skd,劃水速度v1=dt=kd24s,故AC正確。小船在垂直河岸方向上做勻速直線運(yùn)動,在沿河岸方向上做變速運(yùn)動,合加速度的方向與合速度方向不在同一條直線上,做曲線運(yùn)動,故B錯誤。由于渡河的軌跡是曲線,則渡河路程x>d2+s2,故D正確。故選ACD。 13.如圖疊放在水平轉(zhuǎn)臺上的物體A、B、C正隨轉(zhuǎn)臺一起以角速度ω

26、勻速轉(zhuǎn)動(沒發(fā)生相對滑動),A、B、C的質(zhì)量分別為3m、2m、m,B與轉(zhuǎn)臺、C與轉(zhuǎn)臺、A與B間的動摩擦因數(shù)都為μ,B、C離轉(zhuǎn)臺中心的距離分別為r、1.5r,最大靜摩擦力等于滑動摩擦力,以下說法正確的是(  ) A.B對A的摩擦力有可能為3μmg B.C與轉(zhuǎn)臺間的摩擦力小于A與B間的摩擦力 C.轉(zhuǎn)臺的角速度ω有可能恰好等于2μg3r D.若角速度ω再在題干所述基礎(chǔ)上緩慢增大,A與B間將最先發(fā)生相對滑動 【答案】 BC 【解析】 【分析】 根據(jù)題中“A、B、C正隨轉(zhuǎn)臺一起以角速度ω勻速轉(zhuǎn)動(沒發(fā)生相對滑動)”可知,本題考查水平面內(nèi)的圓周運(yùn)動問題。根據(jù)處理水平面內(nèi)圓周運(yùn)動問題

27、的方法,應(yīng)用牛頓第二定律、整體法、臨界條件等知識分析推斷。 【詳解】 AC:對AB整體,有(3m+2m)ω2r≤μ(3m+2m)g;對物體C,有mω2(1.5r)≤μmg;對物體A,有3mω2r≤3μmg。聯(lián)立解得:ω≤2μg3r,即滿足不發(fā)生相對滑動,轉(zhuǎn)臺的角速度ω≤2μg3r,A與B間的靜摩擦力最大值f=3mω2r=2μmg。故A項(xiàng)錯誤,C項(xiàng)正確。 B:由于A與C轉(zhuǎn)動的角速度相同,由摩擦力提供向心力;A所受摩擦力fA=3mω2r,C所受摩擦力fC=mω2(1.5r)=1.5mω2r,則C與轉(zhuǎn)臺間的摩擦力小于A與B間的摩擦力。故B項(xiàng)正確。 D:據(jù)A項(xiàng)分析知,最先發(fā)生相對滑動的是物塊C

28、。故D項(xiàng)錯誤。 【點(diǎn)睛】 本題關(guān)鍵是對A、AB整體、C受力分析,根據(jù)靜摩擦力提供向心力及最大靜摩擦力等于滑動摩擦力列式分析。 14.如圖所示,圓形轉(zhuǎn)盤可以繞其豎直軸在水平面內(nèi)轉(zhuǎn)動.甲、乙物體質(zhì)量分別是2m和m(兩物體均看作質(zhì)點(diǎn)),它們與轉(zhuǎn)盤之間的最大靜摩擦力均為正壓力的μ倍,兩物體用一根剛好沿半徑方向被拉直的結(jié)實(shí)輕繩連在一起,甲、乙到圓心的距離分別為r和2r.當(dāng)?shù)氐闹亓铀俣葹間,轉(zhuǎn)盤旋轉(zhuǎn)角速度ω緩慢增大,則( ?。? A.轉(zhuǎn)盤旋轉(zhuǎn)角速度ω<μg2r時,輕繩拉力為零 B.轉(zhuǎn)盤旋轉(zhuǎn)角速度ω<μg2r時,甲受到的靜摩擦力大于乙受到的靜摩擦力 C.轉(zhuǎn)盤旋轉(zhuǎn)角速度ω>μgr時,甲、乙不會

29、相對轉(zhuǎn)盤滑動 D.轉(zhuǎn)盤旋轉(zhuǎn)角速度ω>μgr時,乙將拉著甲向外運(yùn)動 【答案】 AC 【解析】 【分析】 物體做圓周運(yùn)動,靠徑向的合力提供向心力,當(dāng)角速度較小時,兩物體靠靜摩擦力提供向心力,當(dāng)角速度開始增大時,乙先達(dá)到最大靜摩擦力,繩子開始有拉力,通過對甲分析,根據(jù)牛頓第二定律分析摩擦力的變化. 【詳解】 當(dāng)繩子拉力為零時,由靜摩擦力提供向心力,則μmg=mω22r,解得:ω=μg2r,所以轉(zhuǎn)盤旋轉(zhuǎn)角速度ω<μg2r時,輕繩拉力為零,故A正確;向心力F=mω2R,轉(zhuǎn)盤旋轉(zhuǎn)角速度ω<μg2r時,甲受到的靜摩擦力等于乙受到的靜摩擦力,故B錯誤;甲剛好達(dá)到最大靜摩擦力時,有:μ?2mg

30、=2mω2r,解得:ω=μgr,所以當(dāng)ω>μgr時,繩子對甲有拉力,但是甲、乙不會相對轉(zhuǎn)盤滑動,故C正確,D錯誤。故選AC。 【點(diǎn)睛】 物體做圓周運(yùn)動,靠徑向的合力提供向心力,當(dāng)角速度較小時,兩物體靠靜摩擦力提供向心力,當(dāng)角速度開始增大時,乙先達(dá)到最大靜摩擦力,繩子開始有拉力,通過對甲分析,根據(jù)牛頓第二定律分析摩擦力的變化. 15.如圖所示,一位網(wǎng)球運(yùn)動員以拍擊球,使網(wǎng)球沿水平方向飛出.第一只球飛出時的初速度為v1,落在自己一方場地上后,彈跳起來,剛好擦網(wǎng)而過,落在對方場地的A點(diǎn)處.第二只球飛出時的初速度為v2,直接擦網(wǎng)而過,也落在A點(diǎn)處. 設(shè)球與地面碰撞時沒有能量損失,且不計(jì)空氣阻力,

31、則( ) A.網(wǎng)球兩次飛出時的初速度之比v1∶v2=1:3 B.網(wǎng)球兩次飛出時的初速度之比v1∶v2=1:2 C.運(yùn)動員擊球點(diǎn)的高度H與網(wǎng)高h(yuǎn)之比 H∶h= 4:3 D.運(yùn)動員擊球點(diǎn)的高度H與網(wǎng)高h(yuǎn)之比 H∶h=3:2 【答案】 AC 【解析】 【詳解】 AB:兩球被擊出后都做平拋運(yùn)動,據(jù)平拋運(yùn)動的規(guī)律知,兩球被擊至各自第一次落地的時間是相等的。由題意結(jié)合圖可知,兩球從擊出至第一次落地的水平射程之比為x1:x2=1:3,則網(wǎng)球兩次飛出時的初速度之比v1:v2=1:3。故A項(xiàng)正確,B項(xiàng)錯誤。 CD:第一個球落地后反彈做斜拋運(yùn)動,據(jù)運(yùn)動的對稱性可知,DB段的逆

32、過程和OB段是相同的平拋運(yùn)動,則兩只球下落相同高度H-h后水平距離x1'+x2'=2x1,據(jù)x1=v1t1、x1'=v1t2、x2'=v2t2,得:v1t2+v2t2=2v1t1,又v1:v2=1:3,則t1=2t2;H=12gt12、H-h=12gt22,則H=4(H-h),解得:H:h=4:3。故C項(xiàng)正確,D項(xiàng)錯誤。 【點(diǎn)睛】 據(jù)運(yùn)動的可逆性,斜上拋可當(dāng)成平拋的逆過程。 16.如圖所示,水平轉(zhuǎn)盤可繞豎直中心軸轉(zhuǎn)動,盤上疊放著質(zhì)量均為1kg的A、B兩個物塊,B物塊用長為0.25m的細(xì)線與固定在轉(zhuǎn)盤中心處的力傳感器相連,兩個物塊和傳感器的大小均可不計(jì)。細(xì)線能承受的最大拉力為8N,A、B間

33、的動摩擦因數(shù)為0.4,B與轉(zhuǎn)盤間的動摩擦因數(shù)為0.1,且可認(rèn)為最大靜摩擦力等于滑動摩擦力。轉(zhuǎn)盤靜止時,細(xì)線剛好伸直,傳感器的讀數(shù)為零。當(dāng)轉(zhuǎn)盤以不同的角速度勻速轉(zhuǎn)動時,傳感器上就會顯示相應(yīng)的讀數(shù)F(g=10m/s2),以下說法中正確的是() A.當(dāng)轉(zhuǎn)盤的角速度ω1=2rad/s時,A、B間的靜摩擦力達(dá)到最大值 B.當(dāng)轉(zhuǎn)盤的角速度在0<ω<2rad/s范圍內(nèi)時,細(xì)線中的拉力隨ω的增大而增大 C.當(dāng)細(xì)線中的拉力F=6N時,A與B即將相對滑動; D.當(dāng)轉(zhuǎn)盤的角速度ω2=6rad/s時,細(xì)線中的拉力達(dá)到最大值 【答案】 CD 【解析】 【詳解】 對于A物體,靜摩擦力提供向心力,當(dāng)

34、靜摩擦力到達(dá)最大靜摩擦力時,μ1mg=mω2r,解得:ω=4rad/s。當(dāng)繩子剛有拉力時,μ22mg=2mw2r,w=2rad/s,當(dāng)2rad/sm,則 A.當(dāng)兩球離軸距離相等時,兩球可能相對桿不動 B.

35、當(dāng)兩球離軸距離之比等于質(zhì)量之比時,兩球一定相對桿滑動 C.若兩球相對于桿滑動,一定是都向左滑動 D.若轉(zhuǎn)速為ω時,兩球相對桿都不動,那么轉(zhuǎn)速為2ω時,兩球也不動 【答案】 BD 【解析】 【詳解】 A、兩小球所受的繩子的拉力提供向心力,所以向心力大小相等,角速度又相等,當(dāng)兩球離軸距離相等時,則有:Mω2r>mω2r,所以兩球相對桿會滑動;故A錯誤. B、兩球的向心力是相等的,得:Mω2r1=mω2r2 ,所以r1r2=mM<1,兩球離軸距離之比與質(zhì)量成反比。所以兩球離軸距離之比等于質(zhì)量之比時,兩球相對桿都動;故B正確. C、由于兩球用輕細(xì)線連接,所以兩球相對桿滑動時,只能向

36、同一方向滑動;故C錯誤. D、根據(jù)向心力的表達(dá)式,得:Mω2r1=mω2r2 ,由于兩球的向心力相等與角速度無關(guān),所以轉(zhuǎn)速為ω時,兩球相對桿都不動,那么轉(zhuǎn)速為2ω時兩球也不動;故D正確. 故選BD. 【點(diǎn)睛】 本題考查了向心力公式的應(yīng)用,知道兩小球的角速度和向心力相等. 18.如圖甲,小球用不可伸長的輕繩連接后繞固定點(diǎn)O在豎直面內(nèi)做圓周運(yùn)動,小球經(jīng)過最高點(diǎn)時的速度大小為v,此時繩子的拉力大小為FT,拉力FT與速度的平方v2的關(guān)系如圖乙所示,圖象中的數(shù)據(jù)a和b包括重力加速度g都為已知量,以下說法正確的是 A.?dāng)?shù)據(jù)a與小球的質(zhì)量無關(guān) B.?dāng)?shù)據(jù)b與小球的質(zhì)量無關(guān) C.比值b/a只

37、與小球的質(zhì)量有關(guān),與圓周軌道半徑無關(guān) D.利用數(shù)據(jù)a、b和g能夠求出小球的質(zhì)量和圓周軌道半徑 【答案】 AD 【解析】 【詳解】 當(dāng)v2=a時,此時繩子的拉力為零,物體的重力提供向心力,則mg=mv2r,解得v2=gr,故a=gr,與物體的質(zhì)量無關(guān),故A正確;當(dāng)v2=2a時,對物體受力分析,則mg+b=mv2r,解得b=mg,與小球的質(zhì)量有關(guān),故B錯誤;根據(jù)AB可知ba=rm與小球的質(zhì)量有關(guān),與圓周軌道半徑有關(guān),故C錯誤;若F=0,由圖知:v2=a,則有mg=mv2r,解得:r=ag,若v2=2a。則b+mg=mv2r=m2ar,解得:m=bg,故D正確。故選AD。 【點(diǎn)睛】

38、 本題主要考查了圓周運(yùn)動向心力公式的直接應(yīng)用,要求同學(xué)們能根據(jù)圖象獲取有效信息,尤其是圖像與坐標(biāo)軸的交點(diǎn)的物理意義。 19.如圖所示,空間有一底面處于水平地面上的正方體框架ABCD—A1B1C1D1,從頂點(diǎn)A沿不同方向平拋一小球(可視為質(zhì)點(diǎn))。關(guān)于小球的運(yùn)動,下列說法正確的是 A.落點(diǎn)在A1B1C1D1內(nèi)的小球,落在C1點(diǎn)時平拋的初速度最小 B.落點(diǎn)在B1D1上的小球,平拋初速度的最小值與最大值之比是1:2 C.運(yùn)動軌跡與AC1相交的小球,在交點(diǎn)處的速度方向都相同 D.運(yùn)動軌跡與A1C相交的小球,在交點(diǎn)處的速度方向都相同 【答案】 BC 【解析】 【詳解】 小球落到A

39、1B1C1D1內(nèi)時下落的豎直高度都相同,根據(jù)h=12gt2可知,時間相同,落在C1點(diǎn)時水平位移最大,則平拋的初速度最大,選項(xiàng)A錯誤;落點(diǎn)在B1D1上的小球,最近的水平位移為22a,最遠(yuǎn)的水平位移為a(a為正方體的邊長),則平拋初速度的最小值與最大值之比是22:1=1:2,選項(xiàng)B正確;設(shè)AC1的傾角為α,軌跡與AC1線段相交的小球,在交點(diǎn)處的速度方向與水平方向的夾角為θ.則有tanα=yx=12gt2v0t=gt2v0,tanθ=gtv0,則 tanθ=2tanα,可知θ一定,則軌跡與AC1線段相交的小球,在交點(diǎn)處的速度方向相同,故C正確;運(yùn)動軌跡與A1C相交的小球,在交點(diǎn)處的位置不同,則豎直高

40、度不同,根據(jù)vy=2gh可知豎直速度不同,因水平速度相同,可知速度方向都不相同,D錯誤。故選BC. 【點(diǎn)睛】 決本題的關(guān)鍵要掌握平拋運(yùn)動的研究方法,即水平分運(yùn)動為勻速直線運(yùn)動,豎直分運(yùn)動為自由落體運(yùn)動,運(yùn)動時間由下落的高度決定;掌握分位移公式;D項(xiàng)也可以根據(jù)作為結(jié)論記住。 20.如圖所示,置于豎直平面內(nèi)的AB光滑桿,它是以初速為v0,水平射程為s的平拋運(yùn)動軌跡制成的,A端為拋出點(diǎn),B端為落地點(diǎn).現(xiàn)將一小球套于其上,由靜止開始從軌道A端滑下,重力加速度為g.則下列說法正確的是( ?。? A.A端距離地面的高度為gs22v02 B.小球運(yùn)動至B端時其水平方向的速度大小為v0 C.小球

41、運(yùn)動至B端的速率為gsv0 D.小球從A端運(yùn)動至B端的時間為sv0 【答案】 AC 【解析】 【分析】 根據(jù)平拋運(yùn)動的規(guī)律得出平拋運(yùn)動的時間,從而結(jié)合位移時間公式求出A端距離地面的高度.根據(jù)動能定理求出小球到達(dá)B端的速度,結(jié)合平行四邊形定則求出小球到達(dá)B端時水平方向的分速度. 【詳解】 小球若做平拋運(yùn)動,運(yùn)動的時間t=sv0,則A端距離地面的高度h=12gt2=gs22v02,故A正確。對小球分析,根據(jù)動能定理得mgh=12mvB2,解得小球運(yùn)動到B端時的速度vB=2gh=gsv0,B點(diǎn)速度方向與水平方向夾角的正切值tanα=vyv0=gtv0=sgv02,可知vx=vBco

42、sθ=gsv0v04+g2s2,故B錯誤,C正確。小球從A到B做的運(yùn)動不是平拋運(yùn)動,則運(yùn)動的時間t≠sv0,故D錯誤;故選AC。 【點(diǎn)睛】 本題速度的分解是按軌道的切線分解,而軌道的切線方向即為平拋的速度方向,平拋的速度方向與水平方方向夾角θ的正切等于位移方向與水平方向夾角α的正切的2倍。 三、解答題 21.如圖所示,ABCD為固定在豎直平面內(nèi)的軌道,AB段平直傾斜且粗糙,BC段是光滑圓弧,對應(yīng)的圓心角θ=53°,半徑為r,CD段水平粗糙,各段軌道均平滑連接,在D點(diǎn)右側(cè)固定了一個14圓弧擋板MN,圓弧半徑為R,圓弧的圓心也在D點(diǎn)。傾斜軌道所在區(qū)域有場強(qiáng)大小為E=9mg5q、方向垂直

43、于斜軌向下的勻強(qiáng)電場。一個質(zhì)量為m、電荷量為q的帶正電小物塊(視為質(zhì)點(diǎn))在傾斜軌道上的A點(diǎn)由靜止釋放,最終從D點(diǎn)水平拋出并擊中擋板。已知A,B之間距離為2r,斜軌與小物塊之的動摩擦因數(shù)為μ=14,設(shè)小物塊的電荷量保持不變,重力加速度為g,sin53°=0.8,cos53°=0.6。求: (1)小物塊運(yùn)動至圓軌道的C點(diǎn)時對軌道的壓力大??; (2)改變AB之間的距離和場強(qiáng)E的大小,使小物塊每次都能從D點(diǎn)以不同的速度水平拋出并擊中擋板的不同位置,求擊中擋板時小物塊動能的最小值。 【答案】(1)在C點(diǎn)小物塊對圓軌道的壓力大小為F'N=135mg;(2)小物塊動能的最小值為Ekmin=32mg

44、R 【解析】 【詳解】 (1)小物塊由A到B過程由動能定理,得:mgsinθ?2r-μ(mgcosθ+qE)?2r=12mvB2 解得:vB=45gr 小物塊由B到C過程由機(jī)械能守恒定律得:mgr(1-cosθ)=12mvC2-12mvB2 解得:vC=85gr 在C點(diǎn)由牛頓第二定律,得:FN-mg=mvC2r 解得:FN=135mg 由牛頓第三定律可得,在C點(diǎn)小物塊對圓軌道的壓力大小為F'N=135mg (2)小物塊離開D點(diǎn)后做平拋運(yùn)動,水平方向:x=v0t 豎直方向:y=12gt2 而:x2+y2=R2 小物塊平拋過程機(jī)械能守恒,得:mgy=Ek-12mv02

45、由以上式子得:Ek=mgR24y+3mgy4 由數(shù)學(xué)中均值不等式可知:Ek≥2mgR24y?3mgy4=32mgR 則小物塊動能的最小值為Ekmin=32mgR 22.如圖所示,在傾角為30°的光滑斜面上,一輕質(zhì)彈簧兩端連接兩個質(zhì)量均為m=1 kg的物塊B和C。物塊C緊靠著擋板P,物塊B通過一跨過光滑定滑輪的輕質(zhì)細(xì)繩與質(zhì)量m0=8 kg、可視為質(zhì)點(diǎn)的小球A相連,與物塊B相連的細(xì)繩平行于斜面,小球A在外力作用下靜止在對應(yīng)圓心角為60°、半徑R=2 m的光滑圓弧軌道的最高點(diǎn)a處,此時細(xì)繩恰好伸直且無拉力,圓弧軌道的最低點(diǎn)b與光滑水平軌道bc相切?,F(xiàn)由靜止釋放小球A,當(dāng)小球A滑至b點(diǎn)時,物塊B

46、未到達(dá)a點(diǎn),物塊C恰好離開擋板P,此時細(xì)繩斷裂。已知重力加速度g取10 m/s2,彈簧始終處于彈性限度內(nèi),細(xì)繩不可伸長,定滑輪的大小不計(jì)。求: (1)彈簧的勁度系數(shù); (2)在細(xì)繩斷裂后的瞬間,小球A對圓弧軌道的壓力大小。 【答案】(1)5 N/m (2)144 N 【解析】 【詳解】 (1)小球A位于a處時,繩無張力且物塊B靜止,故彈簧處于壓縮狀態(tài) 對B由平衡條件有kx=mgsin 30° 當(dāng)C恰好離開擋板P時,C的加速度為0,故彈簧處于拉升狀態(tài) 對C由平衡條件有kx′=mgsin 30° 由幾何關(guān)系知R=x+x′ 代入數(shù)據(jù)解得k=2mgsin300R=5 N

47、/m (2)物塊A在a處與在b處時,彈簧的形變量相同,彈性勢能相同,故A在a處與在b處時,A、B系統(tǒng)的機(jī)械能相等,有m0gR(1-cos 60°)=mgRsin 30°+12m0vA2+12mvB2 將A在b處的速度分解,由速度分解關(guān)系有vAcos 30°=vB 代入數(shù)據(jù)解得vA=4(m0-m)gR4m0+3m=4 m/s 在b處,對A由牛頓定律有N-m0g=m0vA2R 代入數(shù)據(jù)解得N=m0g+m0vA2R=144 N 由牛頓第三定律,小球A對圓軌道的壓力大小為N′=144 N 23.如圖,在豎直平面內(nèi),一半徑為R的光滑圓弧軌道ABC和水平軌道PA在A點(diǎn)相切。BC為圓弧軌道的直

48、徑。O為圓心,OA和OB之間的夾角為α,sinα=35,一質(zhì)量為m的小球沿水平軌道向右運(yùn)動,經(jīng)A點(diǎn)沿圓弧軌道通過C點(diǎn),落至水平軌道;在整個過程中,除受到重力及軌道作用力外,小球還一直受到一水平恒力的作用,已知小球在C點(diǎn)所受合力的方向指向圓心,且此時小球?qū)壍赖膲毫η『脼榱?。重力加速度大小為g 。求: (1)水平恒力的大小和小球到達(dá)C點(diǎn)時速度的大??; (2)小球到達(dá)A點(diǎn)時的速度的大??; (3)小球從C點(diǎn)落至水平軌道所用的時間。 【答案】(1)34mg5gR2(2)23gR2(3)355Rg 【解析】 【詳解】 (1)設(shè)水平恒力的大小為F0,小球到達(dá)C點(diǎn)時所受合力的大小為F,由力

49、的合成法則,則有:F0mg=tanα F2=(mg)2+F02; 設(shè)小球到達(dá)C點(diǎn)時的速度大小為v,由牛頓第二定律得:F=mv2R 聯(lián)立上式,結(jié)合題目所給數(shù)據(jù),解得:F0=34mg;v=5gR2 (2)設(shè)小球到達(dá)A點(diǎn)的速度大小v1,作CD⊥PA,交PA于D點(diǎn),由幾何關(guān)系得:DA=Rsinα CD=R(1+cosα) 由動能定理有,-mg?CD-F0?DA=12mv2?12mv12 聯(lián)立上式,結(jié)合題目所給數(shù)據(jù),那么小球在A點(diǎn)的速度大小為:v1=23gR2 (3)小球離開C點(diǎn)后,在豎直方向上做初速度不為零的勻加速直線運(yùn)動,加速度大小為g,設(shè)小球在豎直方向的初速度為v⊥,從C點(diǎn)落到

50、水平軌道上所用時間為t,由運(yùn)動學(xué)公式,則有: v⊥t+12gt2=CD v⊥=vsinα 聯(lián)立上式,結(jié)合題目數(shù)據(jù),解得:t=355Rg 24.如圖所示,靜止在光滑水平軌道上的平板車,長L=2.0m,質(zhì)量M=0.25kg.質(zhì)量m=1.0kg的小物塊以v0=10m/s的初速度放在平板車的左端,物塊與平板車上表面間的動摩擦因數(shù)μ=0.6,光滑半圓形固定軌道與光滑水平軌道在同一豎直平面內(nèi),半圓形軌道的半徑r=1m,直徑MON豎直,平板車的上表面和半圓形軌道最低點(diǎn)高度相同,開始時平板車的右端距半圓形軌道底端1.5m,平板車碰到半圓形軌道后立即停止運(yùn)動,取g=10m/s2,求: (1)物塊剛

51、進(jìn)入半圓形軌道時速度的大??; (2)物塊回落至平板車上時與平板車右端的距離. 【答案】(1)v2=215m/s (2)x=22m 【解析】 【分析】 (1)板塊模型在地面光滑的情況下優(yōu)先選擇系統(tǒng)的動量守恒求末速度,但要判斷物塊是否能共速還是滑離木板; (2)物體在到達(dá)半圓軌道的最高點(diǎn)過程中機(jī)械能守恒,可求得速度;且要通過最高點(diǎn)應(yīng)滿足臨界條件則可確定物體可能的運(yùn)動過程;再做平拋運(yùn)動,由運(yùn)動規(guī)律可求得物體距右端的距離. 【詳解】 (1)小物塊、平板車在水平方向上滿足動量守恒定律, 設(shè)二者共速時的速度大小為v1,有:mv0=(m+M)v1 代入數(shù)據(jù)解得:v1=8m/s 設(shè)共速

52、時平板車向右運(yùn)動的位移為x1,由動能定理得μmgx1=12Mv12 解得:x1=43m, 因x1=43m<1.5m,即平板車沒碰到固定半圓形軌道前物塊與平板車已共速,此時物塊相對平板車的位移Δx滿足:μmgΔx=12mv0212(m+M)v12 解得:Δx=53m 平板車停止運(yùn)動后以物塊為研究對象,設(shè)物塊剛進(jìn)入半圓形軌道時的速度大小為v2, 由動能定理有: -μmg(L-Δx)=12mv22-12mv12 解得:v2=215m/s (2)若物塊能到達(dá)半圓形軌道的最高點(diǎn),設(shè)物塊到達(dá)最高點(diǎn)的速度大小為v3, 則由機(jī)械能守恒定律可得:12mv22=12mv32+mg?2r 代入數(shù)據(jù)

53、解得:v3=25m/s 若物塊恰能通過最高點(diǎn)的速度大小為v4,則mg=mv42r 代入數(shù)據(jù)解得:v4=10m/s 因?yàn)関3>v4,故物塊從半圓形軌道的最高點(diǎn)做平拋運(yùn)動,設(shè)距平板車右端的水平距離為x, 由平拋運(yùn)動規(guī)律:水平方向x=v3t 豎直方向:2r=12gt2 代入數(shù)據(jù)解得:x=22m 【點(diǎn)睛】 分析清楚物塊在每個過程的運(yùn)動狀態(tài),根據(jù)物體的運(yùn)動的過程來逐個求解,本題中用到了勻變速直線運(yùn)動、平拋運(yùn)動和圓周運(yùn)動的規(guī)律,涉及到了動量守恒定律、機(jī)械能守恒定律、牛頓第二定律、平拋運(yùn)動等,要求學(xué)生要熟練的應(yīng)用每一部分的知識. 25.如圖排球場,L=9m,球網(wǎng)高度為H=2m,運(yùn)動員站在網(wǎng)

54、前s=3m處,正對球網(wǎng)跳起將球水平擊出,球大小不計(jì),取重力加速度為g=10m/s. (1)若擊球高度為h=2.5m,為使球既不觸網(wǎng)又不出界,求水平擊球的速度范圍; (2) 當(dāng)擊球點(diǎn)的高度h為何值時,無論水平擊球的速度多大,球不是觸網(wǎng)就是出界? 【答案】(1)310m/s<v≤122m/s(2)2.13m 【解析】 【分析】 (1)排球飛出后做平拋運(yùn)動,抓住兩個臨界情況,即剛好不觸網(wǎng)和不越界,由豎直高度可確定時間,根據(jù)水平位移可求得排球的速度范圍; (2)抓住臨界狀態(tài),即此時既不觸網(wǎng)也不越界,結(jié)合平拋運(yùn)動的規(guī)律求出臨界高度。 【詳解】 (1)當(dāng)球剛好不觸網(wǎng)時,根據(jù)h1?h=

55、12gt12,解得:t1=2(h1-h)g=2×(2.5-2)10s=1010s,則平拋運(yùn)動的最小速度為:vmin=x1t1=31010m/s=310m/s.當(dāng)球剛好不越界時,根據(jù)h1=12gt22,解得:t2=2h1g=2×2.510s=22s,則平拋運(yùn)動的最大速度為:vmax=x2t2=3+922m/s=122m/s,則水平擊球的速度范圍為310m/s<v≤122m/s. (2)設(shè)擊球點(diǎn)的高度為H.當(dāng)H較小時,擊球速度過大會出界,擊球速度過小又會觸網(wǎng),情況是球剛好擦網(wǎng)而過,落地時又恰壓底線上,則有:x12Hg=x22(H-h)g, 其中x1=12m,x2=3m,h=2m, 代入數(shù)據(jù)解

56、得:h=2.13m, 即擊球高度不超過此值時,球不是出界就是觸網(wǎng)。 【點(diǎn)睛】 本題考查平拋運(yùn)動在生活中應(yīng)用,要通過分析找出臨界條件,由平拋運(yùn)動的規(guī)律即可求解。 26.如圖所示,水平傳送帶與水平軌道在B點(diǎn)平滑連接,傳送帶A、B間距L=2.0m,一半徑R=0.2m的豎直圓槽形光滑軌道與水平軌道相切于C點(diǎn),水平軌道CD間的距離L=1.0m,在D點(diǎn)固定一豎直擋板。小物塊與傳送帶AB間的動摩擦因數(shù)μ1=0.9,BC段光滑,CD段動摩擦因數(shù)為μ2。當(dāng)傳送帶以v0=6m/s順時針勻速轉(zhuǎn)動時,將質(zhì)量m=1kg的可視為質(zhì)點(diǎn)的小物塊輕放在傳送帶左端A點(diǎn),小物塊通過傳送帶、水平軌道、圓形軌道、水平軌道后與擋

57、板碰撞,并原速率彈回,經(jīng)水平軌道CD返回圓形軌道。已知小物塊從傳送帶滑到水平軌道時機(jī)械能不損失,重力加速度g=10m/s2。求: (1)小物塊第一次滑到傳送帶B點(diǎn)時的速度大??; (2)若小物塊第二次能沖上圓形軌道且能沿軌道運(yùn)動而不會脫離軌道,求μ2的取值范圍。 【答案】(1)6m/s(2)0≤μ2≤0.65或0.8≤μ2<0.9; 【解析】 【分析】 (1)根據(jù)物塊在AB上做勻加速運(yùn)動的末速度不大于傳送帶速度,由傳送帶長度來求解; (2)根據(jù)物塊不脫離軌道得到運(yùn)動狀態(tài),然后對物塊從B到第二次通過圓軌道應(yīng)用動能定理求解. 【詳解】 (1)物塊速度小于傳送帶速度時,物塊受到傳

58、送帶的摩擦力f=μ1mg,那么,物塊做加速度a=μ1g=9m/s2的勻加速直線運(yùn)動; 因?yàn)?aL0=v02,故物塊在傳送帶上做勻加速運(yùn)動,到達(dá)B點(diǎn)時剛好達(dá)到傳送帶速度,所以,物塊滑到B時的速度大小vB=v0=6m/s; (2)要使物塊能第二次沖上圓形軌道且能在沿軌道運(yùn)動時不會脫離圓軌道,那么物塊第二次在圓軌道上運(yùn)動要么能通過最高點(diǎn),要么在圓軌道上最高點(diǎn)的高度h≤R; 故當(dāng)物塊能通過最高點(diǎn)時,在最高點(diǎn)應(yīng)用牛頓第二定律可得:mg≤mv2R; 對物塊從B到第二次到最高點(diǎn)應(yīng)用動能定理可得:?2μ2mgL?2mgR=12mv2?12mvB2 解得:μ2=12mvB2-2mgR-12mv22mg

59、L≤0.65; 當(dāng)物塊在圓軌道上最高點(diǎn)的高度0<h≤R時,由動能定理可得:?2μ2mgL?mgh=0?12mvB2, 解得:μ2=12mvB2-mgh2mgL,所以,0.8≤μ2<0.9; 所以為了使物塊能第二次沖上圓形軌道且能在沿軌道運(yùn)動時不會脫離圓軌道,0≤μ2≤0.65或0.8≤μ2<0.9; 【點(diǎn)睛】 經(jīng)典力學(xué)問題一般先對物體進(jìn)行受力分析,求得合外力及運(yùn)動過程做功情況,然后根據(jù)牛頓定律、動能定理及幾何關(guān)系求解. 27.如圖,質(zhì)量為m=1 kg的小滑塊(視為質(zhì)點(diǎn))在半徑為R=0.4 m的14圓弧A端由靜止開始釋放,它運(yùn)動到B點(diǎn)時速度為v=2 m/s.當(dāng)滑塊經(jīng)過B后立即將圓弧軌

60、道撤去.滑塊在光滑水平面上運(yùn)動一段距離后,通過換向軌道由C點(diǎn)過渡到傾角為θ=37°、長s=1 m的斜面CD上,CD之間鋪了一層勻質(zhì)特殊材料,其與滑塊間的動摩擦因數(shù)可在0≤μ≤1.5之間調(diào)節(jié).斜面底部D點(diǎn)與光滑地面平滑相連,地面上一根輕彈簧一端固定在O點(diǎn),自然狀態(tài)下另一端恰好在D點(diǎn).認(rèn)為滑塊通過C和D前后速度大小不變,最大靜摩擦力等于滑動摩擦力.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,不計(jì)空氣阻力. (1)求滑塊對B點(diǎn)的壓力大小以及在AB上克服阻力所做的功; (2)若設(shè)置μ=0,求質(zhì)點(diǎn)從C運(yùn)動到D的時間; (3)若最終滑塊停在D點(diǎn),求μ的最大值. 【答案

61、】(1)20N;2J(2)13s(3)μ的取值范圍為0.125≤μ<0.75或μ=1. 【解析】 【分析】 (1)根據(jù)牛頓第二定律求出滑塊在B點(diǎn)所受的支持力,從而得出滑塊對B點(diǎn)的壓力,根據(jù)動能定理求出AB端克服阻力做功的大?。? (2)若μ=0,根據(jù)牛頓第二定律求出加速度,結(jié)合位移時間公式求出C到D的時間. (3)最終滑塊停在D點(diǎn)有兩種可能,一個是滑塊恰好從C下滑到D,另一種是在斜面CD和水平面見多次反復(fù)運(yùn)動,最終靜止在D點(diǎn),結(jié)合動能定理進(jìn)行求解. 【詳解】 (1)滑塊在B點(diǎn),受到重力和支持力,在B點(diǎn),根據(jù)牛頓第二定律有:F?mg=mv2R, 代入數(shù)據(jù)解得:F=20N, 由牛頓

62、第三定律得:F′=20N. 從A到B,由動能定理得:mgR?W=12mv2, 代入數(shù)據(jù)得:W=2J. (2)在CD間運(yùn)動,有:mgsinθ=ma, 加速度為:a=gsinθ=10×0.6m/s2=6m/s2, 根據(jù)勻變速運(yùn)動規(guī)律有:s=vt+12at2 代入數(shù)據(jù)解得:t=13s. (3)最終滑塊停在D點(diǎn)有兩種可能: a、滑塊恰好能從C下滑到D.則有: mgsinθ?s?μ1mgcosθ?s=0?12mv2, 代入數(shù)據(jù)得:μ1=1, b、滑塊在斜面CD和水平地面間多次反復(fù)運(yùn)動,最終靜止于D點(diǎn). 當(dāng)滑塊恰好能返回C有:?μ1mgcosθ?2s=0?12mv2, 代入數(shù)據(jù)得

63、到:μ1=0.125, 當(dāng)滑塊恰好能靜止在斜面上,則有:mgsinθ=μ2mgcosθ, 代入數(shù)據(jù)得到:μ2=0.75. 所以,當(dāng)0.125≤μ<0.75,滑塊在CD和水平地面間多次反復(fù)運(yùn)動,最終靜止于D點(diǎn). 綜上所述,μ的取值范圍是0.125≤μ<0.75或μ=1. 【點(diǎn)睛】 解決本題的關(guān)鍵理清滑塊在整個過程中的運(yùn)動規(guī)律,運(yùn)用動力學(xué)知識和動能定理進(jìn)行求解,涉及到時間問題時,優(yōu)先考慮動力學(xué)知識求解.對于第三問,要考慮滑塊停在D點(diǎn)有兩種可能. 28.如圖所示,物體A置于靜止在光滑水平面上的平板小車B的左端,物體在A的上方O點(diǎn)用細(xì)線懸掛一小球C(可視為質(zhì)點(diǎn)),線長L=0.8m.現(xiàn)將小

64、球C拉至水平無初速度釋放,并在最低點(diǎn)與物體A發(fā)生水平正碰,碰撞后小球C反彈的速度為2m/s.已知A、B、C的質(zhì)量分別為mA=4kg、mB=8kg和mC=1kg,A、B間的動摩擦因數(shù)μ=0.2,A、C碰撞時間極短,且只碰一次,取重力加速度g=10m/s2. (1)求小球C與物體A碰撞前瞬間受到細(xì)線的拉力大??; (2)求A、C碰撞后瞬間A的速度大小; (3)若物體A未從小車B上掉落,小車B的最小長度為多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【詳解】 (1)小球下擺過程機(jī)械能守恒,由機(jī)械能守恒定律得:m0gl=12m0v02 代入數(shù)據(jù)

65、解得:v0=4m/s, 對小球,由牛頓第二定律得:F﹣m0g=m0v02l 代入數(shù)據(jù)解得:F=30N (2)小球C與A碰撞后向左擺動的過程中機(jī)械能守恒,得:12mvC2=mgh 所以:vC=2gh=2×10×0.2=2m/s 小球與A碰撞過程系統(tǒng)動量守恒,以小球的初速度方向?yàn)檎较颍? 由動量守恒定律得:m0v0=﹣m0vc+mvA 代入數(shù)據(jù)解得:vA=1.5m/s (3)物塊A與木板B相互作用過程,系統(tǒng)動量守恒,以A的速度方向?yàn)檎较颍? 由動量守恒定律得:mvA=(m+M)v 代入數(shù)據(jù)解得:v=0.5m/s 由能量守恒定律得:μmgx=12mvA2-12(m+M)v2

66、代入數(shù)據(jù)解得:x=0.375m; 29.如圖所示,水平地面和半圓軌道面均光滑,質(zhì)量M=1kg的小車靜止在地面上,小車上表面與R=0.24m的半圓軌道最低點(diǎn)P的切線相平?,F(xiàn)有一質(zhì)量m=2kg的滑塊(可視為質(zhì)點(diǎn))以v0=6m/s的初速度滑上小車左端,二者共速時的速度為v1=4m/s,此時小車還未與墻壁碰撞,當(dāng)小車與墻壁碰撞時即被粘在墻壁上。在半圓軌道的最高點(diǎn)Q有一個滑塊收集器(圖中未畫出),滑塊滑到此處時被俘獲固定在軌道的Q點(diǎn)上。已知滑塊與小車表面的滑動摩擦因數(shù)μ=0.2,g取10m/s2,求: (1)小車的最小長度; (2)小車的長度L在什么范圍,滑塊不脫離軌道? 【答案】(1)3m (2) 3m≤L≤4m或5.8m≤L≤7m 【解析】 【分析】 (1)滑塊在小車滑行過程,系統(tǒng)所受的合外力為零,動量守恒,可求出共同速度.小車的長度與系統(tǒng)產(chǎn)生的內(nèi)能有關(guān).當(dāng)兩者速度相同滑塊剛好滑到小車的右端時,小車的長度最短,根據(jù)能量守恒求解最小長度;(2)滑塊不脫離圓軌道可能從Q點(diǎn)離開軌道,也可能滑到T點(diǎn),根據(jù)動能定理結(jié)合上題的結(jié)果可求出L的范圍. 【詳解】 (1)設(shè)小車的最小長度為

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!