江蘇省南通市高中數(shù)學(xué)第二講變換的復(fù)合與二階矩陣的乘法一復(fù)合變換與二階短陣的乘法(課件教案學(xué)案)(打包6套)新人教A版選修.zip
江蘇省南通市高中數(shù)學(xué)第二講變換的復(fù)合與二階矩陣的乘法一復(fù)合變換與二階短陣的乘法(課件教案學(xué)案)(打包6套)新人教A版選修.zip,江蘇省,南通市,高中數(shù)學(xué),第二,變換,復(fù)合,矩陣,乘法,二階短陣,課件,教案,打包,新人,選修
2.1.2 二階矩陣與平面列向量的乘法
教學(xué)目標(biāo)
1.掌握二階矩陣與平面列向量的乘法規(guī)則
2.理解矩陣對應(yīng)著向量集合到向量集合的映射
教學(xué)重點、難點
二階矩陣與平面列向量的乘法規(guī)則
教學(xué)過程:
一、問題情境
(一)問題:已某電視臺舉行的歌唱比賽,甲、乙兩選手初賽、復(fù)賽成績?nèi)绫恚?
初賽
復(fù)賽
甲
80
90
乙
60
85
規(guī)定比賽的最后成績由初賽和復(fù)賽綜合裁定,其中初賽40%,復(fù)賽占60%.則甲和乙的綜合成績分別是多少?
(二)一般地,我們規(guī)定行矩陣[a11 a12]與列矩陣的乘法規(guī)則為:
二階矩陣與列向量的乘法規(guī)則為:
(三)一般地,對于 則稱T為一個變換.
簡記為:
或
二、建構(gòu)數(shù)學(xué)
一般地,我們規(guī)定行矩陣 與列矩陣的乘法法則為
二階矩陣與列向量的乘法法則為。
一般地,對于平面上的任意一個點(向量)(x,y),若按照對應(yīng)法則T,總能對應(yīng)唯一的一個平面點(向量)(x′,y′),則稱T為一個變換,簡記為
T:(x,y)→(x′,y′),
或
一般地,對于平面向量的變換T,如果變換法則為
,
那么,根據(jù)二階矩陣與列向量的乘法法則可以改寫為
由矩陣確定的變換T,通常記為.根據(jù)變換的定義,它是平面內(nèi)點集到其自身的一個映射.當(dāng)α=表示平面圖形F上的任意點時,這些點就組成了圖形F,它在的作用下,將得到一個新圖形F′——原象集F的象集F′.
三、例題精講
例1 計算
思考:二階矩陣M與列向量的乘法和函數(shù)的定義有什么異同?
例2 :若=,求
解: =
例3⑴已知變換,試將它寫成坐標(biāo)變換的形式;
⑵已知變換,試將它寫成矩陣乘法的形式.
解⑴ ⑵
例4 已知矩陣,,,若A=BC,求函數(shù)在[1,2] 上的最小值.
三、課堂精練
1.計算:(1) (2)
2.(1)點A(1,2)在矩陣對應(yīng)的變換作用下得到的點的坐標(biāo)是___________
(2) 若點A在矩陣對應(yīng)的變換作用下得到的點為(2,4),點A的坐標(biāo)___________.
3.若△ABC的頂點,經(jīng)變換后,新圖形的面積為 3
4.,求 A
解:設(shè),則解之得,則A =
5.(1)已知變換,試將它寫成矩陣的乘法形式.
(2)已知,試將它寫成坐標(biāo)變換的形式.
五、回顧小結(jié)
1. 我已掌握的知識
2. 我已掌握的方法
六、課后作業(yè)
1.用矩陣與向量的乘法的形式表示方程組其中正確的是( )
A B
C D
2.設(shè),點P經(jīng)過矩陣A變換后得到點(5,5),.若P,則 3
3.已知△ABO的頂點坐標(biāo)分別是A(4,2),B(2,4),O(0,0),計算在變換TM=之下三個頂點ABO的對應(yīng)點的坐標(biāo).
4. 已知變換T把平面上的點(2,-1),(0,1)分別變換成點 (0,-1),(2,-1) ,試求變換
T對應(yīng)的矩陣.
4
收藏
編號:4387557
類型:共享資源
大?。?span id="nieicga" class="font-tahoma">8.50MB
格式:ZIP
上傳時間:2020-01-06
30
積分
- 關(guān) 鍵 詞:
-
江蘇省
南通市
高中數(shù)學(xué)
第二
變換
復(fù)合
矩陣
乘法
二階短陣
課件
教案
打包
新人
選修
- 資源描述:
-
江蘇省南通市高中數(shù)學(xué)第二講變換的復(fù)合與二階矩陣的乘法一復(fù)合變換與二階短陣的乘法(課件教案學(xué)案)(打包6套)新人教A版選修.zip,江蘇省,南通市,高中數(shù)學(xué),第二,變換,復(fù)合,矩陣,乘法,二階短陣,課件,教案,打包,新人,選修
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。