云南省中考數(shù)學(xué)總復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練.doc
《云南省中考數(shù)學(xué)總復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練.doc》由會員分享,可在線閱讀,更多相關(guān)《云南省中考數(shù)學(xué)總復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練.doc(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第四節(jié) 二次函數(shù)的基本性質(zhì) 姓名:________ 班級:________ 限時(shí):______分鐘 1.(xx曲靖一模)若拋物線y=2(x-m)2+6-3m的頂點(diǎn)在第四象限,則m的值可以是____________________(寫一個(gè)即可). 2.(xx曲靖羅平一模)已知拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為-1,則a+c=______. 3.(xx孝感)如圖,拋物線y=ax2與直線y=bx+c的兩個(gè)交點(diǎn)坐標(biāo)分別為A(-2,4),B(1,1),則方程ax2=bx+c的解是_____________________. 4.(xx山西)用配方法將二次函數(shù)y=x2-8x-9化為y=a(x-h(huán))2+k的形式為( ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25 5.(xx陜西)對于拋物線y=ax2+(2a-1)x+a-3,當(dāng)x=1時(shí),y>0,則這條拋物線的頂點(diǎn)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.(xx黃岡)當(dāng)a≤x≤a+1時(shí),函數(shù)y=x2-2x+1的最小值為1,則a的值為( ) A.-1 B.2 C.0或2 D.-1或2 7.(xx紹興)若拋物線y=x2+ax+b與x軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線.已知某定弦拋物線的對稱軸為直線x=1,將此拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位,得到的拋物線過點(diǎn)( ) A.(-3,-6) B.(-3,0) C.(-3,-5) D.(-3,-1) 8.(xx泰安)二次函數(shù)y=ax2+bx+c的圖象如圖所示,則反比例函數(shù)y=與一次函數(shù)y=ax+b在同一坐標(biāo)系內(nèi)的大致圖象是( ) 9.(xx河北)對于題目“一段拋物線L:y=-x(x-3)+c(0≤x≤3)與直線l:y=x+2有唯一公共點(diǎn),若c為整數(shù),確定所有c的值,”甲的結(jié)果是c=1,乙的結(jié)果是c=3或4,則( ) A.甲的結(jié)果正確 B.乙的結(jié)果正確 C.甲、乙的結(jié)果合在一起才正確 D.甲、乙的結(jié)果合在一起也不正確 10.(xx安順)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個(gè)結(jié)論:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2.其中正確的結(jié)論有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 11.(xx濰坊)已知二次函數(shù)y=-(x-h(huán))2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對應(yīng)的函數(shù)值y的最大值為-1,則h的值為( ) A.3或6 B.1或6 C.1或3 D.4或6 12.(xx天津)已知拋物線y=ax2+bx+c(a,b,c為常數(shù),a≠0)經(jīng)過點(diǎn)(-1,0),(0,3),其對稱軸在y軸右側(cè),有下列結(jié)論: ①拋物線經(jīng)過點(diǎn)(1,0); ②方程ax2+bx+c=2有兩個(gè)不相等的實(shí)數(shù)根; ③-3<a+b<3. 其中,正確結(jié)論的個(gè)數(shù)為( ) A.0 B.1 C.2 D.3 13.(xx杭州)四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)x=1時(shí),函數(shù)有最小值;乙發(fā)現(xiàn)-1是方程x2+bx+c=0的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時(shí),y=4.已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( ) A.甲 B.乙 C.丙 D.丁 14.(xx曲靖羅平一模)如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論: ①abc<0;②>0; ③ac-b+1=0;④OAOB=-. 其中正確的結(jié)論是( ) A.4 B.3 C.2 D.1 15.(xx南京)已知二次函數(shù)y=2(x-1)(x-m-3)(m為常數(shù)). (1)求證:不論m為何值,該函數(shù)的圖象與x軸總有公共點(diǎn); (2)當(dāng)m取什么值時(shí),該函數(shù)的圖象與y軸的交點(diǎn)在x軸的上方? 16.(xx寧波)已知拋物線y=-x2+bx+c經(jīng)過點(diǎn)(1,0),(0,). (1)求該拋物線的函數(shù)表達(dá)式; (2)將拋物線y=-x2+bx+c平移,使其頂點(diǎn)恰好落在原點(diǎn),請寫出一種平移的方法及平移后的函數(shù)表達(dá)式. 1.(xx蘇州)如圖,已知拋物線y=x2-4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D. (1)求線段AD的長度; (2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′,若新拋物線經(jīng)過點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達(dá)式. 2.(xx杭州)設(shè)二次函數(shù)y=ax2+bx-(a+b)(a,b是常數(shù),a≠0). (1)判斷該二次函數(shù)圖象與x軸的交點(diǎn)的個(gè)數(shù),說明理由; (2)若該二次函數(shù)圖象經(jīng)過A(-1,4),B(0,-1),C(1,1)三個(gè)點(diǎn)中的其中兩個(gè)點(diǎn),求該二次函數(shù)的表達(dá)式; (3)若a+b<0,點(diǎn)P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0. 參考答案 【基礎(chǔ)訓(xùn)練】 1.3(答案不唯一) 2.1 3.x1=-2,x2=1 4.B 5.C 6.D 7.B 8.C 9.D 10.B 11.B 12.C 13.B 14.B 15.(1)證明:當(dāng)y=0,根據(jù)方程2(x-1)(x-m-3)=0. 解得x1=1,x2=m+3. 當(dāng)m+3=1,即m=-2時(shí),方程有兩個(gè)相等的實(shí)數(shù)根; 當(dāng)m+3≠1,即m≠-2時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根. ∴不論m為何值,該函數(shù)的圖象與x軸總有公共點(diǎn). (2)解: 當(dāng)x=0時(shí),y=2(x-1)(x-m-3)=2m+6, ∴該函數(shù)的圖象與y軸交點(diǎn)的縱坐標(biāo)是2m+6. ∴當(dāng)2m+6>0,即m>-3時(shí),該函數(shù)的圖象與y軸的交點(diǎn)在x軸的上方. 16.解:(1)把(1,0),(0,)代入拋物線的表達(dá)式,得解得 則拋物線的表達(dá)式為y=-x2-x+; (2)拋物線的表達(dá)式為y=-x2-x+ =-(x+1)2+2, ∴將拋物線先向右平移1個(gè)單位,再向下平移2個(gè)單位,其頂點(diǎn)恰好落在原點(diǎn). 平移后的函數(shù)表達(dá)式變?yōu)閥=-x2. 【拔高訓(xùn)練】 1.解:(1)由x2-4=0得,x1=-2,x2=2. ∵點(diǎn)A位于點(diǎn)B的左側(cè), ∴A(-2,0). ∵直線y=x+m經(jīng)過點(diǎn)A, ∴-2+m=0, 解得m=2, ∴點(diǎn)D的坐標(biāo)為(0,2), ∴AD==2; (2)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為y=x2+bx+2, y=x2+bx+2=(x+)2+2-, 則點(diǎn)C′的坐標(biāo)為(-,2-). ∵CC′平行于直線AD,且經(jīng)過C(0,-4), ∴直線CC′的解析式為y=x-4, ∴2-=--4, 解得b1=-4,b2=6, ∴新拋物線對應(yīng)的函數(shù)表達(dá)式為y=x2-4x+2或y=x2+6x+2. 2.(1)解: 由題意得Δ=b2-4a[-(a+b)]=b2+4ab+4a2=(2a+b)2≥0, ∴該二次函數(shù)圖象與x軸的交點(diǎn)的個(gè)數(shù)有兩個(gè)或一個(gè). (2)解: 當(dāng)x=1時(shí),y=a+b-(a+b)=0, ∴拋物線不經(jīng)過點(diǎn)C, 把點(diǎn)A(-1,4),B(0,-1)分別代入,得 解得 ∴該二次函數(shù)的表達(dá)式為y=3x2-2x-1. (3)證明:當(dāng)x=2時(shí), m=4a+2b-(a+b)=3a+b>0①. ∵a+b<0, ∴-a-b>0②, ①+②,得2a>0, ∴a>0.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 云南省中考數(shù)學(xué)總復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練 云南省 中考 數(shù)學(xué) 復(fù)習(xí) 第三 第四 二次 基本 性質(zhì) 同步 訓(xùn)練
鏈接地址:http://m.appdesigncorp.com/p-3740771.html