裝配圖插秧機(jī)系統(tǒng)設(shè)計(jì)
裝配圖插秧機(jī)系統(tǒng)設(shè)計(jì),裝配,插秧機(jī),系統(tǒng),設(shè)計(jì)
鹽城工學(xué)院機(jī)械工程系畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)機(jī)械設(shè)計(jì)制造及其自動(dòng)化 專業(yè)設(shè)計(jì)(論文)題目PF455S插秧機(jī)及其側(cè)離合器手柄的探討和改善設(shè)計(jì) 學(xué)生姓名 汪 波 班 級(jí) 材機(jī)99(5) 學(xué) 號(hào) B9912015 起訖日期 3.216.26 指導(dǎo)教師 倪文龍 教研室主任 系 主 任 發(fā)任務(wù)書(shū)日期 年 月 日鹽城工學(xué)院機(jī)械工程系畢業(yè)設(shè)計(jì)說(shuō)明書(shū)(論文)摘 要本文主要介紹了有關(guān)當(dāng)前中國(guó)從韓國(guó)引進(jìn)的PF455S動(dòng)力插秧機(jī)的主要原理,特征和性能,以及在使用過(guò)程中出現(xiàn)的與中國(guó)土地種植環(huán)境的差異而出現(xiàn)的問(wèn)題,比如說(shuō):并對(duì)此問(wèn)題,作了研究,提出了一些解決方案。由于篇幅有限,本文在解決方案上主要介紹了側(cè)離合器手柄的探討與改進(jìn)設(shè)計(jì)。針對(duì)此問(wèn)題列出了不同的方案,最總經(jīng)過(guò)方案比較,考慮高效、穩(wěn)定和經(jīng)濟(jì)的方案,使插秧機(jī)的性能得到進(jìn)一步的完善。關(guān)鍵詞:PF455S插秧機(jī) 側(cè)離合器手柄 改進(jìn)設(shè)計(jì) AbstractCardinal principle about present PF455S power Rice transplanter introduced from Korea S. of China of main introduction of this text, Characteristic and performance, and appear in the course of using plant problem that difference appear of environment with Chinese land, And this question, have been studied, has put forward some solutions. Because space limited, this text main introduction incline clutch discussion and improvement of handle design at solution. List different scheme to question this , compare scheme always most, Consider that high-efficient, stability and economic scheme, make the performance of the seeding machine get further perfection. Keywords:PF455S Rice Transplanter Incline the clutch handle Improve and design1鹽城工學(xué)院機(jī)械工程系畢業(yè)設(shè)計(jì)說(shuō)明書(shū)(論文)目 錄引言 .11 正文 3 1.1總體方案論證 31.1.1PF455S插秧機(jī)的動(dòng)力傳遞 5 1.1.1.1驅(qū)動(dòng)和轉(zhuǎn)向驅(qū)動(dòng)路線 6 1.1.1.2插植臂驅(qū)動(dòng)和株距調(diào)整傳動(dòng)路線71.1.1.3苗箱移動(dòng)及橫向送秧量的調(diào)節(jié)81.1.1.4 縱向送秧傳動(dòng)路線 81.1.2插秧機(jī)主要部件的構(gòu)造81.1.2.1 發(fā)動(dòng)機(jī)81.1.2.2 主變速箱111.1.2.3 插植臂基本構(gòu)造及工作原理.121.1.2.4 插植鏈輪箱基本構(gòu)造.121.2計(jì)算部分 181.2.1幾何尺寸的確認(rèn)計(jì)算.181.2.2材料硬度的校核計(jì)算19 1.2.3螺栓校核計(jì)算 211.3 設(shè)計(jì)部分 231.3.1對(duì)于調(diào)速手柄附和板的改進(jìn)設(shè)計(jì) 231.3.2 對(duì)于附著板的改進(jìn)設(shè)計(jì) 242 結(jié)論 26致謝 27參考文獻(xiàn) 28附件清單 291鹽城工學(xué)院機(jī)械工程系畢業(yè)設(shè)計(jì)說(shuō)明書(shū)0 引言我國(guó)是農(nóng)業(yè)大國(guó),水稻是我國(guó)的主要糧食作物,種植面積為0.29億公頃.各級(jí)技術(shù)人員通過(guò)多年的探索,總結(jié)出群體質(zhì)量栽培模式。高性能插秧機(jī)是與當(dāng)今世界插秧機(jī)設(shè)計(jì)、制造技術(shù)接軌的高新技術(shù),他與過(guò)去的插秧機(jī)有關(guān)很大的區(qū)別,首先他的性能依據(jù)于現(xiàn)代水道群體質(zhì)量栽培管理理論,促進(jìn)水稻高產(chǎn)穩(wěn)定。高興能插秧機(jī)所插的秧苗是通過(guò)表準(zhǔn)化育秧規(guī)范培育而成的,插秧機(jī)所用的秧苗規(guī)格基本一致,插秧機(jī)就是為這樣的秧苗而設(shè)計(jì)的所以查插秧質(zhì)量比過(guò)去高的多,這也符合現(xiàn)代前后工序的銜接的工業(yè)化原理,這顯然與形態(tài)千差萬(wàn)別的手撥有著本質(zhì)的區(qū)別,可以說(shuō)是先帶農(nóng)業(yè)發(fā)展的必然結(jié)果。它的行走底盤和國(guó)產(chǎn)機(jī)不同,有別于國(guó)產(chǎn)機(jī)的獨(dú)輪驅(qū)動(dòng)的插秧機(jī),機(jī)動(dòng)性能和水田通過(guò)性好。還有高性能插秧機(jī)的分體式浮板及液壓放行裝置基本上解決了長(zhǎng)期以來(lái)國(guó)產(chǎn)機(jī)插秧機(jī)沒(méi)有解決的壅泥、壅水及栽插深度不一致等弊端。它配有調(diào)整取秧數(shù)量的手柄,可以方便的調(diào)整索取秧苗的數(shù)量。他采用高強(qiáng)度鋁合金、合金鋼、PVC等材料先進(jìn)工藝制造,保證了機(jī)器使用的可靠性。但是由于我國(guó)土地條件的不同,及其正進(jìn)行國(guó)產(chǎn)化開(kāi)發(fā),所以在使用中出現(xiàn)了和多的問(wèn)題,首先是側(cè)理合器手柄組裝,調(diào)試,使用都出現(xiàn)了比較嚴(yán)重的問(wèn)題,還有就是齒輪箱等也出現(xiàn)不少問(wèn)題。本設(shè)計(jì)也是最求進(jìn)經(jīng)濟(jì)合理,和穩(wěn)定性的方案進(jìn)行的。PF455S可以說(shuō)是一種完美的中國(guó)型插秧機(jī),但是問(wèn)題也是不可避免的。首先,對(duì)于它的的手柄安裝加緊不當(dāng)問(wèn)題,其次,再者,支螺栓改進(jìn),最后,油門拉線的安裝孔改進(jìn)等問(wèn)題。本課題所著重研究是側(cè)離器手柄板金件加工,操作設(shè)計(jì)較為簡(jiǎn)單,由于本次是改進(jìn)設(shè)計(jì),所設(shè)計(jì)的模具修改,沒(méi)有作詳細(xì)的介紹,本文著重于改進(jìn)設(shè)計(jì)的探討和相關(guān)的設(shè)計(jì)計(jì)算。我的畢業(yè)設(shè)計(jì)題目是PF455S插秧機(jī)及其側(cè)離合器手柄的探討和改善設(shè)計(jì),在東洋插秧機(jī)公司實(shí)習(xí)且完成了我的畢業(yè)設(shè)計(jì)。在公司的開(kāi)發(fā)部,我協(xié)助同事對(duì)策離合器手柄進(jìn)行了改進(jìn)設(shè)計(jì)。對(duì)插秧機(jī)的工作原理及其特點(diǎn)有了深入的了解,在此基礎(chǔ)上,我開(kāi)始完成我的畢業(yè)設(shè)計(jì)。我先熟悉產(chǎn)品的工作原理,熟悉各零件的加工工藝,在充分了解產(chǎn)品的基礎(chǔ)上,我確定了設(shè)計(jì)思路和總體的方案。先設(shè)計(jì)計(jì)合尺寸,對(duì)材料的校核計(jì)算,但因?yàn)闀r(shí)間的關(guān)系,我只是對(duì)于策離合器手柄進(jìn)行了探討和改善設(shè)計(jì),我將在以后的工作中完善我的知識(shí)。在設(shè)計(jì)過(guò)程中,我把整個(gè)產(chǎn)品每一個(gè)部分進(jìn)行了較為深刻了解,然后分別根據(jù)各自的組成原理,初步設(shè)計(jì)零件以及機(jī)構(gòu)傳動(dòng)特點(diǎn),然后考慮其裝配的要求,力爭(zhēng)小巧,美觀;在鏈輪的設(shè)計(jì)中我主要考慮其以前出現(xiàn)的問(wèn)題點(diǎn),以及重要部件的加工工藝,熱處理工藝,裝配關(guān)系。在此改進(jìn)設(shè)計(jì)中,我都提供了裝配圖以及非標(biāo)的零件圖其中包括改進(jìn)前后的圖紙;此外,還提供了一些和計(jì)算相關(guān)的主要的零件圖和PF455S插秧機(jī)總裝圖,以保持設(shè)計(jì)的完整。經(jīng)過(guò)本次改進(jìn)設(shè)計(jì)之后,我們?nèi)〉酶玫漠a(chǎn)品、更廉價(jià)的成本,完全符合我們所研究的初衷,原來(lái)配件生產(chǎn)中出現(xiàn)的問(wèn)題,在此我們都已經(jīng)解決。很多東西。本文所用公式引用及文獻(xiàn)的引用,均來(lái)自與參考文獻(xiàn)資料,見(jiàn)參考文獻(xiàn)。1 設(shè)計(jì)說(shuō)明書(shū)正文11 總體方案論證PF455S插秧機(jī)是一種適合于我國(guó)水稻產(chǎn)區(qū)廣大經(jīng)濟(jì)條件使用的步行式水稻插秧機(jī),PF455S插秧機(jī)設(shè)計(jì)結(jié)構(gòu)簡(jiǎn)單、輕巧,操作靈便,使用安全可靠,他主要由發(fā)動(dòng)機(jī)、傳動(dòng)系統(tǒng)、機(jī)架及行走系統(tǒng)、液壓仿行及插深控制系統(tǒng)等組成。見(jiàn)圖(1-1)11PF455S插秧機(jī)是雙輪驅(qū)動(dòng)步行式插秧機(jī),人在機(jī)后步行操作,其主要操作系統(tǒng)都在機(jī)器后部,用剛絲與各控制部分相連,便于操作,控制機(jī)器。苗箱與插植臂也在機(jī)器后部,便于機(jī)手查看并添加秧苗。為了提高機(jī)器的機(jī)動(dòng)性能,減輕重量,PF455S插秧機(jī)大大采用了工程塑料(浮板、秧箱、罩蓋等)和鋁合金鑄件(主變速箱、插枝傳動(dòng)箱、導(dǎo)軌等)。插秧機(jī)的發(fā)動(dòng)機(jī)在前部,使機(jī)器前后平衡。PF455S插秧機(jī)技術(shù)參數(shù)如下:機(jī)器主要部件具有以下特點(diǎn):動(dòng)力部分:采用2.3馬力汽油發(fā)動(dòng)機(jī),性能穩(wěn)定,啟動(dòng)方便。插植部分:配有調(diào)整秧數(shù)量的手柄,縱向取苗量調(diào)節(jié)從0.8cm到1.7cm,共10檔;橫向取苗調(diào)節(jié)有20、24、26三檔,能提供0.9-2.4cm內(nèi)30個(gè)不同的量化面積和形狀,給局農(nóng)藝要求調(diào)整。行走部分:采用三條船行浮板,可以有效的防止或減少水田行走時(shí)產(chǎn)生的壅泥而沖起已插好的秧苗的弊端。采用鋼圈式包叫膠驅(qū)動(dòng)輪,在水田行走時(shí),附著效果好,打滑率低,同時(shí)由于輪子很窄,所留輪痕輕微。1.1.1 PF455S插秧機(jī)的動(dòng)力傳遞1-2從傳動(dòng)簡(jiǎn)圖(1-2)看出插秧機(jī)的動(dòng)力傳遞大致可分為三條路線:一是車輪驅(qū)動(dòng)和轉(zhuǎn)向路線;二是插植驅(qū)動(dòng)及株距調(diào)整傳動(dòng)路線;三是苗箱移動(dòng)和送秧量調(diào)節(jié)傳動(dòng)路線。這三條動(dòng)力傳遞路線想互協(xié)作共同完成插植部插秧機(jī)的動(dòng)作。具提過(guò)程如下:1.1.1.1動(dòng)和轉(zhuǎn)向驅(qū)動(dòng)路線PF455S插秧機(jī)工作檔位分為3檔:插秧工作檔、行走工作檔和到退檔。不同的檔位是依靠主變速箱內(nèi)的不同齒輪副相互嚙合來(lái)實(shí)現(xiàn)的。發(fā)動(dòng)機(jī)輸出的動(dòng)力經(jīng)過(guò)兩級(jí)皮帶輪傳入輸入軸。通過(guò)變速桿撥叉帶動(dòng)雙聯(lián)猾移齒輪22-13左右猾移來(lái)實(shí)現(xiàn)檔位選擇。插秧檔時(shí)齒輪13和齒輪53相互嚙合,行走檔時(shí)齒輪22與45相互嚙合,后退檔時(shí)齒輪22與47嚙合再由齒輪21與53嚙合,將動(dòng)力傳入側(cè)離合器軸,通過(guò)轉(zhuǎn)向離合器,再由齒輪14和齒輪45嚙合將動(dòng)力傳入驅(qū)動(dòng)輪,鏈輪11與鏈輪25通過(guò)鏈條將動(dòng)力傳入行走驅(qū)動(dòng)輪,驅(qū)動(dòng)機(jī)器前進(jìn)或后退。(1-3、1-4)131.1.1.2插植臂驅(qū)動(dòng)和株距調(diào)整傳動(dòng)路線當(dāng)動(dòng)力傳入輸入軸后,除通過(guò)雙聯(lián)滑移齒輪22-13傳遞給行走驅(qū)動(dòng)輪一條線外,還有通過(guò)雙聯(lián)滑移齒輪48-51左右滑移與不同的齒輪相互嚙合,改變插植臂的轉(zhuǎn)速來(lái)實(shí)現(xiàn)的。當(dāng)株距選擇為“70”檔時(shí),齒輪18 與齒輪51嚙合。當(dāng)株距選擇為“80”檔時(shí)齒輪20與齒輪51嚙合。當(dāng)株距選擇“90”是 齒輪21與齒輪48嚙合,將動(dòng)力插植臂輸入軸,再由鏈輪12與鏈輪11通過(guò)鏈條將動(dòng)力輸入插植臂輸入軸,再由鏈輪9將動(dòng)力傳給插植臂,實(shí)現(xiàn)插秧動(dòng)作。1.1.1.3苗箱移動(dòng)及橫向送秧量的調(diào)節(jié)當(dāng)動(dòng)力傳入插秧輸入軸后又分兩條傳動(dòng)線路,一條傳動(dòng)線路由鏈輪9傳入插植臂,另一條線路由雙聯(lián)滑移齒輪12-12與不同齒輪想嚙合傳入導(dǎo)向凸輪軸,通過(guò)凸輪滑塊組帶動(dòng)苗箱移動(dòng)。橫向送秧量調(diào)節(jié)是通過(guò)移箱器內(nèi)的雙聯(lián)齒輪12-12與不同的齒輪相互嚙合,改變廟箱的移動(dòng)速度來(lái)實(shí)現(xiàn)的,當(dāng)橫向送秧量選擇為“20”時(shí),齒輪20與齒輪12嚙合,選擇為“24”擋時(shí)。齒輪24與齒輪12嚙合,選擇為“26”擋時(shí),齒輪26與齒輪12嚙合,將動(dòng)力傳入導(dǎo)向凸輪軸,通過(guò)凸輪滑塊組帶動(dòng)苗箱移動(dòng)。1.1.1.4 縱向送秧傳動(dòng)路線當(dāng)秧箱移至左右極限位置時(shí),導(dǎo)向滑塊推動(dòng)縱向送秧軸和縱向送秧凸輪左右移動(dòng)使送秧凸輪組合咬合,將動(dòng)力傳入縱向送秧軸,從而帶動(dòng)縱向送秧苗桿和苗移送支架組成的四連桿機(jī)構(gòu)轉(zhuǎn)動(dòng),撥動(dòng)縱送秧星輪轉(zhuǎn)動(dòng),完成縱送秧動(dòng)作??v送秧結(jié)速后,縱向送秧凸輪組合在彈簧的作用下,切斷動(dòng)力傳遞。1.1.2插秧機(jī)主要部件的構(gòu)造1.1.2.1 發(fā)動(dòng)機(jī)發(fā)動(dòng)機(jī)是一種能量個(gè)轉(zhuǎn)換工具,它把燃料燃燒產(chǎn)生的熱能轉(zhuǎn)化成機(jī)械能。PF455S插秧機(jī)中,它可以說(shuō)是整個(gè)插秧機(jī)的心臟,是產(chǎn)生并輸出動(dòng)力的部件。PF455S插秧機(jī)采用的是四沖程汽油機(jī)。它主要由發(fā)動(dòng)機(jī)缸體、反沖式啟動(dòng)器、燃油過(guò)濾器、空氣濾清器、汽化器、消音器等組成。首先探討一下它的曲柄連桿機(jī)構(gòu)。它包括活塞組、連桿組和曲軸等部件構(gòu)成。它的作用是將活塞的往復(fù)運(yùn)動(dòng)轉(zhuǎn)變?yōu)榍男D(zhuǎn)運(yùn)動(dòng),將作用在活塞上的燃?xì)鈮毫ψ優(yōu)榕ぞ?,通過(guò)曲軸輸出?;钊M由活塞、活塞環(huán)、活塞銷等組成?;钊敳颗c汽缸蓋、汽缸共同組成燃燒室?;钊褪且苿?dòng)曲軸旋轉(zhuǎn)。那么連桿組主要由連桿、連桿蓋、連桿軸瓦幾連桿螺栓等組成。它的作用就是就是將活塞承受的力傳遞給曲柄,并使活塞的往副運(yùn)動(dòng)轉(zhuǎn)變?yōu)榍S的旋轉(zhuǎn)運(yùn)動(dòng)。曲軸組主要使用來(lái)承受連桿傳來(lái)的力,并轉(zhuǎn)換成曲軸曲線的轉(zhuǎn)矩,用以輸出所需的動(dòng)力。發(fā)動(dòng)機(jī)的配氣系統(tǒng)由氣門、氣門彈簧、彈簧上下托盤、氣門推桿和配時(shí)齒輪組成,它可以根據(jù)工作循環(huán)的需要,及時(shí)正確的是混合器進(jìn)入汽缸,并將燃燒后的廢氣排除氣缸。其工作原理是:當(dāng)曲軸回轉(zhuǎn)時(shí)配時(shí)齒輪以2:1的比速帶動(dòng)凸輪回轉(zhuǎn),凸輪定時(shí)的將推桿頂起,推桿克服氣門彈簧的彈力,把氣門推開(kāi)。當(dāng)凸輪的頂端離開(kāi)推桿時(shí),靠氣門彈簧的彈力將氣門推入氣門座,使氣門關(guān)閉。這是它的曲柄連桿機(jī)構(gòu)。燃油供給系統(tǒng)主要由油箱、燃油過(guò)濾器、汽化器等組成,其功能就是將汽油和空氣按比例形成的可燃混合氣供給氣缸,以滿足燃燒過(guò)程的需要。燃油過(guò)濾器主要由濾芯、油杯等組成,作用是濾去油液中的雜質(zhì),保持油液清潔;15汽化器主要由浮子室、浮子、針閥、噴有管、量孔、喉管、混合室、節(jié)氣門、油門等零件組成,主要作用是將液態(tài)汽油通過(guò)控制油路從主噴嘴噴出(霧化),并于空氣按一定的的比例混合,形成可燃?xì)怏w。汽油從油箱經(jīng)過(guò)過(guò)濾后流到汽化器的浮子室,斧子室頂部有空與大氣相通,此處壓力與大氣壓相同。汽化器混合室兩端,一端與空氣濾輕騎清器相連,異端和汽油機(jī)進(jìn)氣口想連。混合室內(nèi)有一最窄處稱為喉管,然油主噴嘴位于喉管附近,此處空氣流速最大。當(dāng)氣門打開(kāi)時(shí),活塞下行,氣室容積增大,缸內(nèi)壓力小于大氣壓。此時(shí)主噴嘴處空氣壓力形成較大的壓力差。汽油在壓力的作用下,自浮子室主噴嘴噴入混合室,噴出的燃油即被高速的氣流沖散,成為大小不等的霧狀顆粒與空氣混合后達(dá)汽缸。由于實(shí)際情況中汽油機(jī)負(fù)載會(huì)發(fā)生變化,所需的功率也響應(yīng)的變化。需要控制油門大小來(lái)改變混合氣的量。當(dāng)油門的開(kāi)度越大,整個(gè)空氣管道內(nèi)的空氣流量也越大。汽油機(jī)的功率也響應(yīng)加大。反之,油門開(kāi)度變小,功率也隨之減小。當(dāng)油門小到一定程度時(shí),喉管處的副壓幾乎不存在,主噴嘴就無(wú)法依靠壓力差噴出汽油,為此,汽化器的工作系統(tǒng)中除了主供油系統(tǒng)外,還設(shè)計(jì)了輔助供油有系統(tǒng)。即增設(shè)了一怠速裝置,作用就是再保證很小負(fù)荷市,為汽缸提供混合氣,不致使發(fā)動(dòng)機(jī)熄火,同時(shí)可以節(jié)省燃油。它的潤(rùn)滑系統(tǒng)主要有油槽、賤油匙等組成。該系統(tǒng)采用飛濺潤(rùn)滑方式將油送到個(gè)運(yùn)動(dòng)部件的磨查表面,起到潤(rùn)滑的作用。其過(guò)程為:將潤(rùn)滑油加注到曲軸箱內(nèi)并保持一定潤(rùn)滑油面高度,曲柄連桿機(jī)構(gòu)運(yùn)轉(zhuǎn)時(shí),連桿打頭的濺油匙把有槽內(nèi)的內(nèi)的機(jī)油濺起,被濺起的機(jī)油顆粒直接飛濺到汽缸、活塞,連桿的大小等需要潤(rùn)滑的表面上,使這些磨檫表面得到潤(rùn)滑。它的點(diǎn)火系統(tǒng)主要有火花塞、高壓導(dǎo)線、飛輪磁電機(jī)等組成。可在預(yù)定得時(shí)間,及時(shí)產(chǎn)生點(diǎn)火花,點(diǎn)燃汽缸內(nèi)受壓縮的可燃混合氣從而是內(nèi)燃機(jī)實(shí)現(xiàn)做功過(guò)程。飛輪磁惦記電機(jī)的作用是直接產(chǎn)生火花塞所需的高電壓。對(duì)于啟動(dòng)系統(tǒng),主要是由反沖式啟動(dòng)器和輔助機(jī)構(gòu)組成。他的作用是給汽油機(jī)提供初始運(yùn)動(dòng)能量,使反動(dòng)機(jī)進(jìn)入原轉(zhuǎn)狀態(tài)。發(fā)沖式啟動(dòng)器和輔助機(jī)構(gòu)組成:殼體、反沖彈簧、反沖卷軸、棘爪、啟動(dòng)鋼套、拉繩等組成。有于發(fā)動(dòng)機(jī)為四沖程汽油機(jī),再它的一個(gè)工作循環(huán)內(nèi)的四個(gè)沖程中,只有一個(gè)是做功的,其余三個(gè)沖程是為做工作準(zhǔn)備。因此,發(fā)動(dòng)機(jī)每轉(zhuǎn)兩周只有半周是由膨脹氣體作用是曲軸旋轉(zhuǎn)的,其余一周半只靠慣性維持運(yùn)動(dòng),故曲軸轉(zhuǎn)速是不均勻的。為了調(diào)節(jié)曲軸的轉(zhuǎn)速,使其運(yùn)動(dòng)趨向平穩(wěn),在曲軸上裝有離心式自動(dòng)調(diào)速裝置。該裝置由飛球、彈簧、杠桿、拉桿等組成。它是利用回轉(zhuǎn)物體的離心力,隨回轉(zhuǎn)速度的增減,自動(dòng)地控制油門的開(kāi)度。兩個(gè)有一定重量的飛球(飛塊)由活動(dòng)杠桿連接于軸上,軸由傳動(dòng)裝置帶動(dòng)而回轉(zhuǎn),飛球也隨著回轉(zhuǎn)。飛球回轉(zhuǎn)時(shí),即產(chǎn)生離開(kāi)旋轉(zhuǎn)軸心的離心力。在飛球的活動(dòng)杠桿之間有一彈簧3,轉(zhuǎn)速不夠高時(shí),飛球上的離心力不足以克服彈簧3的張力,就不能飛開(kāi),這時(shí)與杠桿5、拉桿6相連接的油門7開(kāi)度很大,大量的混合氣吸進(jìn)汽缸,機(jī)組的轉(zhuǎn)速隨即增加。隨著機(jī)器轉(zhuǎn)速的增加,調(diào)速器轉(zhuǎn)軸的轉(zhuǎn)速也增加,飛球的離心力隨著加大。當(dāng)軸1的轉(zhuǎn)速足夠大時(shí),飛球的離心力會(huì)增大到足以克服彈簧的張力而向外飛開(kāi),帶動(dòng)滑環(huán)4向上移動(dòng),通過(guò)杠桿5和拉桿6使油門關(guān)小,轉(zhuǎn)速降低。轉(zhuǎn)速降低到飛球上的離心力與彈簧的張力平衡時(shí),機(jī)組就穩(wěn)定在這個(gè)轉(zhuǎn)速上。發(fā)動(dòng)機(jī)負(fù)荷增加時(shí),轉(zhuǎn)速降低,飛球上的離心力減少,由于彈簧的作用,飛球下降,滑環(huán)4下移,通過(guò)調(diào)速杠桿5和拉桿6使油門開(kāi)大,轉(zhuǎn)速因之增加。飛球的離心力與彈簧張力再度平衡時(shí),油門又位于一個(gè)新的開(kāi)度(較以前的開(kāi)度大),機(jī)組保持近于要求的額定轉(zhuǎn)速。除去負(fù)荷時(shí),由于轉(zhuǎn)速的增加使飛球受較大離心力的作用而飛開(kāi),并通過(guò)調(diào)速杠桿使油門關(guān)小,因此仍能保持額定的轉(zhuǎn)速。1.1.2.2 主變速箱主變速箱主要由輸入軸及齒輪組件、插植驅(qū)動(dòng)軸及齒輪組件、側(cè)離合器軸及齒輪組件、驅(qū)動(dòng)輪軸組件、變速撥叉組件、株距撥叉組件、轉(zhuǎn)向撥叉組件及安全離合器組件等部件構(gòu)成。通過(guò)它將發(fā)動(dòng)機(jī)的動(dòng)力及運(yùn)動(dòng)按不同的參數(shù)傳遞給行走機(jī)構(gòu)和插植機(jī)構(gòu)。主變速箱內(nèi)輸入軸組件、插植驅(qū)動(dòng)軸組件、側(cè)離合器軸組件、驅(qū)動(dòng)輪軸組件結(jié)構(gòu)呈空間分布如下。1、輸入軸與輸入皮帶輪通過(guò)鍵聯(lián)接,軸上分布有齒輪(21、20、18)、雙聯(lián)滑移齒輪22-13。作用是將發(fā)動(dòng)機(jī)的動(dòng)力傳遞給側(cè)離合器軸和驅(qū)動(dòng)輪軸。2、插植驅(qū)動(dòng)軸上分布有雙聯(lián)滑移齒輪48-51、雙聯(lián)齒輪47-21。作用是將輸入齒輪軸傳遞的動(dòng)力傳給安全離合器組件。3、側(cè)離合器軸上分布有側(cè)離合器齒輪(45、53)、壓緊彈簧組成。作用是將輸入齒輪軸或雙聯(lián)齒輪47-21傳遞的動(dòng)力傳給驅(qū)動(dòng)輪軸。4、驅(qū)動(dòng)輪軸組件有兩套,有左右之分,由驅(qū)動(dòng)輪齒輪軸(44)驅(qū)動(dòng)鏈輪(11)、C型卡環(huán)組成。作用是將側(cè)離合器齒輪軸傳遞的動(dòng)力傳給行走機(jī)構(gòu)。5、變速撥叉組件由變速撥叉、鋼珠、壓緊彈簧、O型橡膠圈組成。作用是撥動(dòng)雙聯(lián)滑移齒輪22-13左右滑移,實(shí)現(xiàn)不同工作檔位的選擇。6、株距撥叉組件由株距撥叉、鋼珠、壓緊彈簧、O型橡膠圈組成。作用是撥動(dòng)雙聯(lián)滑移齒輪48-51左右滑移。1.1.2.3 插植臂基本構(gòu)造及工作原理PF455S插秧機(jī)插植臂共有四個(gè),兩個(gè)一組,呈左右對(duì)稱狀。插植臂主要由壓出臂組件、秧針、插植叉組件和插植臂殼體組件組成,其用途是從苗箱上切取下秧塊,并栽插到田里。一、基本構(gòu)成壓出臂組件由壓出凸輪、壓出臂、壓出臂銷組成。其作用是在秧針入土前瞬間,將插植叉迅速下壓,彈出秧苗。插植叉組件由插植叉、開(kāi)口銷、壓出螺母、壓出鎖母、緩沖墊、插植襯套、油封組成,作用是在秧針和插植叉前端的配合下,從苗箱上取下設(shè)定大小的秧苗塊,并在秧針入土前夕,插植叉在壓出凸輪和壓出臂的作用下,以彈出速度將秧苗從秧針上推出,插入田里。插植臂殼體組件由插植臂外殼、蓋板、注油帽、搖動(dòng)曲柄、插植曲柄、插植臂曲柄鎖銷組成,其作用是安裝各類插植零件,并按設(shè)定的軌跡完成插植動(dòng)作。二、工作原理1、插植臂的基本工作原理和運(yùn)動(dòng)軌跡可以簡(jiǎn)化成四連桿機(jī)構(gòu)。圖中“BED”為插植臂主體,“OA”為帶動(dòng)插植臂運(yùn)動(dòng)的曲柄,以角速度t旋轉(zhuǎn),動(dòng)力由此輸入,一端與插臂主體相連,“BC”為搖桿(搖動(dòng)曲柄),即OABC組成一個(gè)曲柄搖桿機(jī)構(gòu),插秧的運(yùn)動(dòng)軌跡取決于四根桿子“OA”、“AB”、“BC”、“CO”的長(zhǎng)度,曲柄“OA”的轉(zhuǎn)速及插秧機(jī)的運(yùn)動(dòng)速度V0,一般來(lái)說(shuō),為了模仿人工插秧,在插植動(dòng)作完成并提起插植臂時(shí)不把已插秧苗“帶出”或“帶倒”,秧針前端的運(yùn)動(dòng)軌跡應(yīng)呈“V”型余搖線體或“V”型尖稅狀。2、為了減少搖植臂工作過(guò)程中產(chǎn)生的振動(dòng),克服插植臂產(chǎn)生的慣性,插植曲柄另一端形成一扇形配重3、由插植傳動(dòng)箱傳來(lái)的動(dòng)力,通過(guò)插植臂曲柄軸帶動(dòng)壓出凸輪轉(zhuǎn)動(dòng),當(dāng)壓出凸輪作用于壓出臂時(shí),壓出臂彈簧被壓縮,插植叉提起。秧針進(jìn)入秧門取秧后,帶住秧塊往下達(dá)到栽插位置時(shí),壓出臂瞬時(shí)間脫離壓出凸輪,在壓出臂彈簧的作用下,插植叉把秧塊彈出,完成栽插動(dòng)作。接著插植臂提起,壓出凸輪再次作用于壓出臂,由此往返動(dòng)作,完成栽插工作。1.1.2.4 插植鏈輪箱基本構(gòu)造插植鏈輪箱有兩個(gè),左右對(duì)稱,各負(fù)責(zé)一組(兩個(gè))插植臂勸力和運(yùn)動(dòng)傳遞。鏈輪箱主要由箱體、驅(qū)動(dòng)鏈輪、從動(dòng)鏈輪、鏈條和張緊彈簧片組成。 基本構(gòu)造及其作用 1、驅(qū)動(dòng)鏈輪,作用是將傳動(dòng)軸傳來(lái)的動(dòng)力通過(guò)鏈條傳給從動(dòng)鏈輪。2、從動(dòng)鏈輪,作用是將鏈條傳來(lái)的動(dòng)力再通過(guò)從動(dòng)鏈輪軸傳輸出來(lái)。3、鏈條,作用是將驅(qū)動(dòng)鏈輪的動(dòng)力傳給從動(dòng)鏈輪。4、張緊彈簧片,作用是保持鏈條一定的張緊度。傳動(dòng)軸帶動(dòng)驅(qū)動(dòng)鏈輪,驅(qū)動(dòng)鏈輪通過(guò)鏈條將動(dòng)力傳給從動(dòng)鏈輪,從動(dòng)鏈輪再通過(guò)從動(dòng)鏈輪軸將動(dòng)力傳輸出來(lái),張緊片是調(diào)整鏈條張緊度的。裝配調(diào)整時(shí),應(yīng)注意定位,軸和鏈輪的鍵槽和鏈輪箱一小凸起對(duì)齊,這樣才能保證運(yùn)轉(zhuǎn)正常。否則兩組插植臂動(dòng)將會(huì)不一致,而且與苗箱橫向移動(dòng)也無(wú)法配合,插植臂將會(huì)打到苗箱及導(dǎo)軌上。另外,插植鏈輪箱為哈夫式鏈輪箱,箱體和箱蓋由銷釘和銷孔定位,密封紙墊兩面要用密封膠涂勻,使其配合緊密,防止漏油。1.1.2.5 液壓控制系統(tǒng)PF455S插秧機(jī)液壓控制系統(tǒng)主要由液壓泵、油缸、控制閥、控制閥臂、仿形連動(dòng)臂、油壓連動(dòng)臂、控制手柄及連接鋼絲等組成。插秧機(jī)的液壓控制系統(tǒng)依據(jù)對(duì)液壓控制閥門的控制方式的不同可分為手柄控制的液壓升降系統(tǒng)和浮板控制的液壓仿形插深控制系統(tǒng)。1-6一、手柄控制的液壓升降系統(tǒng)液壓升降系統(tǒng)的控制手柄共有三個(gè)位置,“上升”、“固定”、“下降”。當(dāng)液壓控制手柄處于“上升”位置時(shí),手柄連接鋼絲帶動(dòng)控制閥臂動(dòng)作,液壓閥臂靠向后面10mm凸臺(tái),液壓泵向油缸供油,使油液從左向右流動(dòng)(如圖1-6),推動(dòng)活塞桿向右移動(dòng)。由于活塞桿與仿形連動(dòng)臂相連,從而推動(dòng)仿形連動(dòng)臂往上移動(dòng),仿形連動(dòng)臂通過(guò)調(diào)節(jié)螺栓帶動(dòng)仿形臂連同鏈輪箱(鏈輪箭頭方向),仿形連動(dòng)臂通過(guò)調(diào)節(jié)螺栓帶動(dòng)仿形臂連同鏈輪箱(鏈輪箱與仿形臂剛性連接)繞驅(qū)動(dòng)輪軸向上轉(zhuǎn)過(guò)一個(gè)角度,從而使機(jī)身相對(duì)地面上升一定的高度,即機(jī)體上升。當(dāng)控制手柄處于“固定”位置時(shí),液壓閥臂在兩個(gè)10mm凸臺(tái)中間,液壓泵既不向油缸供油,油缸的油也回不到油箱。活塞桿保持原有狀態(tài),機(jī)體也保持原有高度。當(dāng)將液壓手柄撥至“下降”位置,液壓閥臂靠向前面10mm凸臺(tái),液壓泵不向油缸供油,同時(shí)油缸向油箱的回流油路打通,機(jī)體在自重的作用下,油缸活塞腔內(nèi)的液壓油回流到油箱,活塞桿從右向左移動(dòng),仿形臂連同鏈輪箱繞驅(qū)動(dòng)輪軸向下轉(zhuǎn)過(guò)一個(gè)角度,從而使機(jī)體下降一定的高度。當(dāng)插秧機(jī)在道路、田硬上行走和過(guò)溝埂時(shí),機(jī)體應(yīng)處于上升狀態(tài),以利于行走方便快捷。在田中插秧作業(yè) 時(shí),應(yīng)處于下降狀態(tài),讓浮板緊貼地面,使液壓壓自動(dòng)插深控制系統(tǒng)起作用。二、液壓仿形自動(dòng)插深控制系統(tǒng)。液壓仿形自動(dòng)插深控制系統(tǒng)是通過(guò)利用浮板與機(jī)體之間的相對(duì)位置變化來(lái)控制液壓油缸的動(dòng)作,改變行走輪與機(jī)體的位置,使機(jī)體與浮板保持一個(gè)穩(wěn)定的相對(duì)位置關(guān)系,從而達(dá)到穩(wěn)定插秧深度的目的。當(dāng)插秧機(jī)在田中插秧作業(yè)時(shí),液壓手柄應(yīng)處于“下降”位置,讓浮板緊貼地面。遇田間不平時(shí),浮板就隨田面的高低相對(duì)于機(jī)體作上下浮動(dòng)。浮板用一連桿與油壓連動(dòng)臂連接。當(dāng)浮板上下浮動(dòng)時(shí),帶動(dòng)油壓連動(dòng)臂及油壓閥臂轉(zhuǎn)動(dòng),繼而牽動(dòng)控制閥動(dòng)作(基本原理與手柄控制系統(tǒng)相同),完成機(jī)體的自動(dòng)升降。這樣在田間的插秧深度隨著機(jī)體的自我調(diào)節(jié),基本保持一致。17在油壓閥臂構(gòu)件上,有兩個(gè)長(zhǎng)形腰孔,下面一個(gè)腰孔為液壓鋼絲銷孔,受液壓手柄控制;上面腰孔為液壓控制啟動(dòng)鋼絲(秧苗支架鋼絲)銷孔,受主離合器手柄控制。當(dāng)主離合器手柄在“斷開(kāi)”位置時(shí),液壓控制啟動(dòng)鋼絲(秧苗支架鋼絲)受彈簧彈力的作用頂在前面,中浮板前端抬起時(shí)不能克服彈簧彈力,使油壓閥臂不能向后移動(dòng),液壓仿形不起作用。此時(shí)將液壓手柄置于“上升”位置,液壓鋼絲帶動(dòng)油壓閥臂向后移動(dòng),并將液壓控制啟動(dòng)鋼絲(秧苗支架鋼絲)向后收縮,壓縮彈簧。因此主離合器手柄在“斷開(kāi)”位置時(shí),液壓手柄仍可起作用,液壓自動(dòng)仿形不起作用。當(dāng)主離合器手柄在“連接”位置時(shí),液壓控制啟動(dòng)鋼絲(秧苗支架鋼絲)被拉向后方,使油壓閥臂可自由地帶動(dòng)液壓控制閥臂處于“上升”、“下降”位置,液壓仿形起作用。以上為PF455S插秧機(jī)的主要系統(tǒng)組成及其原理特點(diǎn),可以說(shuō)是一種完美的中國(guó)型插秧機(jī),但是問(wèn)題也是不可避免的,下面主要談?wù)剛?cè)離合器手柄的問(wèn)題解決方案。首先對(duì)于它的的手柄安裝加緊不當(dāng)問(wèn)題方案1:改變附著板的支落孔的位置方案2:改變側(cè)離合器手把的尺寸 18比較兩種方案前者需更改孔的位置,而后者則需要考慮其受力等因素,成型要做較為嚴(yán)重的調(diào)整,無(wú)論是經(jīng)濟(jì)還是工序上還是前者更符合我門的設(shè)計(jì)思想和要求。其次,12-05部件的焊接改為鉚接焊接 19再次支螺栓改進(jìn)方案1:使用國(guó)產(chǎn)防水螺母方案2:使用普通螺母,將螺栓端部打鐓比較兩種方案由于次螺栓的主要作用是作為一種支架使用防水螺母的意義不是太大,所以第二種方案更好。最后對(duì)油門拉線的安裝孔改進(jìn)方案1:將孔徑由6.2變位6.0方案2:將油門拉線頭加大本方案主要考慮生產(chǎn)廠家的地域問(wèn)題,就近解決能解決好的問(wèn)題,要就近處理1.2計(jì)算部分本部裝選擇了冷軋鋼板作為加工原材料,其許用應(yīng)力=275MPa,材料厚度1.6mm 根據(jù)GB707-88和GB700-881.2.1幾何尺寸的確認(rèn)計(jì)算 撥叉的行程,在完全分離是行程4mm, 由于撥叉和轉(zhuǎn)相撥插軸轉(zhuǎn)角可以認(rèn)為是大小一樣.則拉線的行程為:l=,即l=12.8mm110可以看出12.8mm為拉線的最小移動(dòng)行程 111在此種情況下手柄7所產(chǎn)生的轉(zhuǎn)角為 = =21 38在完全離合上沒(méi)有問(wèn)題,側(cè)離合器的手柄行程足夠,即使在包含其他因素在內(nèi)的情況下,所以在幾何尺寸上應(yīng)該沒(méi)有問(wèn)題,下面就要進(jìn)行材料硬度的校核計(jì)算。1.2.2材料硬度的校核計(jì)算本材料為冷拉鋼板GB/708-88和GB700-88 查的材料的抗拉強(qiáng)度=275MPa1-12當(dāng)側(cè)離合器手柄達(dá)最大位置時(shí),此時(shí)各部位的受力也就是最大的時(shí)候。此時(shí) 拉線的行程:S= S=22.5mm 彈簧的行程:s= s= s=7.03mm有虎克定理 F1= F1= F1=17.43kgf由力矩平衡原理 =則 F2= F2= F2=5.45kgf1-13對(duì)與側(cè)離合器手柄來(lái)說(shuō),上圖中的3.66mm處可以說(shuō)是最危險(xiǎn)面,因?yàn)檫@里受力較為復(fù)雜.1-14我們假設(shè)所有拉線的作用的力都集中在這一面內(nèi),則其應(yīng)力如下: = = =9.12 MPa由此看出,我們選材在此處正確,可以滿足配件所需的硬度。123 螺栓的受力分析 1 將繩子的拉力F向結(jié)合面平移,附加翻轉(zhuǎn)力矩M1) 橫向載荷力 F=50N2) 翻轉(zhuǎn)力矩M=3mm50N=150Nmm該螺栓組聯(lián)接受翻轉(zhuǎn)力矩和橫向載荷聯(lián)合作用,載荷方向如圖所示。2螺栓的工作載荷1)螺栓所受的橫向載荷 F= F=50N 按結(jié)合面m=1,查表14-4取f=0.15防滑系數(shù)k取1.1,則單個(gè)螺栓的預(yù)緊力F=110N2)翻轉(zhuǎn)力矩M引起的螺栓載荷 在翻轉(zhuǎn)力矩M的作用下,螺栓所受拉力F=M/Z=150/3=50N3)螺栓所受軸向總拉力F,查表14-11取k=0.25 F=F0+ kF=1100.2550=22.5N3強(qiáng)度計(jì)算1)計(jì)算許用拉應(yīng)力 選4.8級(jí)螺栓,查表14-7,=340MPa,考慮嚴(yán)格控制與緊力,S=1.4 =/S=340/1.4=242.9MPa2)計(jì)算螺栓直徑: d2.42mm 取M=5mm5校核接合面上的擠壓應(yīng)力 總的要求:上端接合面間不出現(xiàn)縫隙,下端接合面不被壓潰。1)計(jì)算結(jié)合面面積A和抗彎截面系數(shù)W A=bb=55=25mm W=M/=150Nmm2)接合面下端不壓潰 由表14-5查出許用擠壓應(yīng)力=0.8=0.8340=272MPa =+ =+=4.6MPa0 故滿足要求 因此取M5的六角頭螺栓(GB5781-86),查機(jī)械設(shè)計(jì)手冊(cè),選擇其余參數(shù) d=5mm d=5.2mm, e=10mm, k=3.5mm, r=0.2 s=8mm l=12mm材料為45鋼,鍍鋅鈍化,公差等級(jí)為C,螺紋公差6g標(biāo)記:螺紋規(guī)格d=M5, 公稱長(zhǎng)度l=16mm,C級(jí)六角頭螺栓 性能等級(jí)48級(jí),螺栓GB5781-86 M616 經(jīng)過(guò)鍍鋅鈍化1.3 設(shè)計(jì)部分通過(guò)上面的介紹和計(jì)算我們可以清楚看到,我們?cè)O(shè)計(jì)的思想和設(shè)計(jì)的方法,還有我們?cè)O(shè)計(jì)的初衷。對(duì)于整臺(tái)插秧機(jī)來(lái)說(shuō)機(jī)器的每一個(gè)環(huán)節(jié) ,都不容我們的忽視,小問(wèn)題就是大問(wèn)題的前言,可能更嚴(yán)重后果即將出現(xiàn),所我們會(huì)細(xì)心注意他的每一個(gè)環(huán)節(jié)。當(dāng)前插秧機(jī)技術(shù)發(fā)展迅速,特別是日本的企業(yè)有為精湛。這就要求我們對(duì)插秧機(jī)每一個(gè)環(huán)節(jié)細(xì)心精致,保持他優(yōu)良的品質(zhì)。下面就是我們計(jì)算所得的方案。1.3.1對(duì)于調(diào)速手柄附和板的改進(jìn)設(shè)計(jì)1-15以前27.2尺寸為25.4,只所做出如此改進(jìn)方案,考慮的是多方面的原因。首先從它的安裝出現(xiàn)的問(wèn)題,那就是安裝不能到位,理論上講,手把支架的直徑也是25.4但是為什么如此問(wèn)題呢?就是因?yàn)闆](méi)有考慮到他們公差累加,他們的相關(guān)配件公差累加以后,就造成超差,安裝是問(wèn)題自然就出來(lái)了。對(duì)于這部分的改進(jìn)操作經(jīng)過(guò)了實(shí)際的操作獲得了成功。1.3.2 對(duì)于附著板的改進(jìn)設(shè)計(jì)首先我們對(duì)于原來(lái)所選材料再次進(jìn)行了粗估計(jì)算,能滿足我們的要求,于是就在它和相關(guān)部件的結(jié)構(gòu)修改上,因?yàn)槎际氢k金件,采用了沖壓工藝,精度能滿足我們所要得精度要求。表面的熱處理依然采用的是電泳處理,他問(wèn)題的和所在就是中間孔8.2的位置問(wèn)題。見(jiàn)下頁(yè)圖所示 (具體見(jiàn)附件PF455S-12-03)1- 16如果在此狀態(tài)下,產(chǎn)生如附件(pf455s-12 改進(jìn)前)圖樣,無(wú)法正確動(dòng)作,經(jīng)過(guò)實(shí)際部件組裝得出如下解決方案,即將孔的位置往右偏移1mm,往下偏移3mm。如附件PF455S-12所示。2結(jié)論本文主要介紹了PF455S動(dòng)力插秧機(jī)的設(shè)計(jì)原理與主要特征參數(shù),對(duì)發(fā)現(xiàn)部分問(wèn)題進(jìn)行研究和探討,解決側(cè)離器手柄的以前存在問(wèn)題,因?yàn)楸菊n題所著重研究是側(cè)離器手柄板金件加工,操作較為簡(jiǎn)單,但經(jīng)過(guò)本次改進(jìn)設(shè)計(jì)之后,我們?nèi)〉酶玫漠a(chǎn)品、更廉價(jià)的成本,完全符合我們所研究的初衷,原來(lái)配件生產(chǎn)中出現(xiàn)的問(wèn)題,在此我們都已經(jīng)解決,但是研究中也難免出現(xiàn)不足之處,那就是由于時(shí)間和水平所限,在外觀上沒(méi)能作出生大改進(jìn),只是基于所出現(xiàn)問(wèn)題,作了針對(duì)性的改進(jìn)。愿我日后的努力,來(lái)彌補(bǔ)當(dāng)前的不足。3致謝對(duì)于本次畢業(yè)設(shè)計(jì),由于本人在單位實(shí)習(xí),參加畢業(yè)設(shè)計(jì)沒(méi)有充足的材料,但是在倪文龍老師不惜辛苦的指導(dǎo)下,我們?cè)诒敬萎厴I(yè)設(shè)計(jì)學(xué)習(xí)了很多東西。當(dāng)然本次畢業(yè)設(shè)計(jì)中也要感謝所在單位的江蘇東洋插秧機(jī)有限公司高級(jí)工程師孫承顯指導(dǎo)和安排,使我能順利地進(jìn)行畢業(yè)設(shè)計(jì)。在這里向倪老師和同學(xué)們以及所在單位領(lǐng)導(dǎo)同事的大力支持表示衷心的感謝。畢業(yè)設(shè)計(jì)是一個(gè)系統(tǒng)的過(guò)程,通過(guò)這個(gè)過(guò)程,我們學(xué)會(huì)了分析問(wèn)題、解決問(wèn)題的一些基本的方法,讓我們系統(tǒng)回顧了大學(xué)四年學(xué)過(guò)的知識(shí),也為我們將來(lái)的工作打下了基礎(chǔ)。本次課程設(shè)計(jì)中,接觸了一種新的事物農(nóng)機(jī)機(jī)械,對(duì)我們來(lái)說(shuō)可能有些生疏,但也是機(jī)械工程的一個(gè)分支,所以在本次畢業(yè)設(shè)計(jì)中擴(kuò)大和鞏固了我們的知識(shí)面,更深層次的了解零件的加工工藝方法和工藝過(guò)程,本課題主要是對(duì)插秧機(jī)部分配件的改進(jìn)提出改進(jìn)方案,但任何配件都不能在組裝獨(dú)立存在,所以本次設(shè)計(jì)中對(duì)相關(guān)配件也作了相關(guān)說(shuō)明,不足之處請(qǐng)批評(píng)指正。參考文獻(xiàn)1 張貴林,何志剛,朱柏林.簡(jiǎn)明農(nóng)業(yè)機(jī)械設(shè)計(jì)標(biāo)準(zhǔn)應(yīng)用手冊(cè).北京:機(jī)械工業(yè)出版社,1993.11,第一版2 農(nóng)業(yè)機(jī)械編寫(xiě)小組,農(nóng)業(yè)機(jī)械.北京:北京出版社,1978年2月第1版3 劉鴻文,材料力學(xué).北京:高等教育出版社,1992.9年第3版4 機(jī)械設(shè)計(jì).北京:高等教育出版社5 PF455S插秧機(jī)培訓(xùn)教材.南京:江蘇省農(nóng)業(yè)機(jī)械技術(shù)推廣站6 天津大學(xué),機(jī)械設(shè)計(jì)零件手冊(cè).北京:高等教育出版社7 機(jī)械設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社8 機(jī)械原理.北京:高等教育出版社9 陳秀寧,施高義,機(jī)械設(shè)計(jì)課程設(shè)計(jì).杭州:浙江大學(xué)出版社10 江蘇東洋插秧機(jī)有限公司.PF455S插秧機(jī)使用說(shuō)明書(shū).江蘇:江蘇東洋插秧機(jī)有限公司,2003.1附件清單1、 插秧機(jī)總裝圖 B9912015-PF455S-00 A0+ 1張;2、 側(cè)離合器手柄部裝圖(左) B9912015-PF455S-14 A2 1張;3、 側(cè)離合器手柄部裝圖(右) B9912015-PF455S-12 A2 1張;4、 調(diào)速手柄罩 B9912015-PF455S-12-101 A3 1張;5、 彈簧板 B9912015-PF455S-12-102 A4 1張;6、 調(diào)速拉線手柄 B9912015-PF455S-12-01 A4 1張;7、 調(diào)速手把 B9912015-PF455S-12-01-101 A3 1張;8、 調(diào)速拉線導(dǎo)板 B9912015-PF455S-12-01-102 A3 1張;9、 固定銷 B9912015-PF455S-12-01-103 A4 1張;10、間距板 B9912015-PF455S-12-103 A4 1張;11、調(diào)速手柄附和板 B9912015-PF455S-12-02 A4 1張;12、附著板 B9912015-PF455S-12-03 A3 1張;13、附著板 B9912015-PF455S-12-03- 101 A3 1張;14、側(cè)離合器手柄 B9912015-PF455S-12-04 A3 1張;15、側(cè)離合器手柄 B9912015-PF455S-12-04- 101 A3 1張;16、襯套 B9912015-PF455S-12-04- 103 A3 1張;17、制動(dòng)鐵 B9912015-PF455S-12-04- 102 A4 1張;18、張緊彈簧 B9912015-PF455S-12-104 A4 1張;19、支螺栓 B9912015-PF455S-12-105 A4 1張;20、壓緊橡膠 B9912015-PF455S-12-106 A4 1張;21、螺栓 B9912015-PF455S-12-107 A4 1張;22、固定板 B9912015-PF455S-14-101 A4 1張;相關(guān)零件圖:1、 側(cè)離合器撥叉 B9912015-PF455S-04- 124 A3 1張;2、 離合器臂組合 B9912015-PF455S-04- 02 A4 1張;3、 轉(zhuǎn)動(dòng)片 B9912015PF455S-04-02-101 A4 1張;4、 主離合器銷 B9912015-PF455S-04-113 A4 1張;改進(jìn)前圖紙:1、 離合器手柄部裝圖(左) B9912015-PF455S-14 A2 1張;2、 離合器手柄部裝圖(右) B9912015-PF455S-12 A2 1張;3、附著板 B9912015-PF455S-12- 03 A3 1張;4、附著板 B9912015-PF455S-12-03-101 A3 1張;5、調(diào)速手柄附和板 B9912015-PF455S-12-02 A4 1張31一、設(shè)計(jì)(論文)內(nèi)容 1)提出PF455S插秧機(jī)的主要特征及性能 2)針對(duì)PF455S插秧機(jī)使用過(guò)程中出現(xiàn)的問(wèn)題,提出相應(yīng)的改進(jìn)方案 3)參閱有關(guān)資料,對(duì)部裝和總裝進(jìn)行繪制二、設(shè)計(jì)(論文)依據(jù) 當(dāng)前隨著社會(huì)經(jīng)濟(jì)技術(shù)的發(fā)展,農(nóng)業(yè)機(jī)械化的程度也不斷提高,動(dòng)力插秧機(jī)在當(dāng)農(nóng)業(yè)作業(yè)中應(yīng)用廣泛,然而本文所介紹的PF455S插秧機(jī)是從韓國(guó)引進(jìn)的高性能插秧機(jī),由于各種條件的差異,所以在國(guó)產(chǎn)化的過(guò)程中出現(xiàn)了不少的問(wèn)題,如側(cè)離合器手柄,形成不及,安裝加緊不到位、拉線卡死等核多問(wèn)題,這就是本課題所要解決的。三、技術(shù)要求 側(cè)離合器手柄: 1)轉(zhuǎn)向力和操作靈敏、穩(wěn)定 拉線行程 221mm 2)油門控制穩(wěn)定、準(zhǔn)確 拉線行程 251mm 3)安裝方便、牢固,對(duì)其他配件不能有傷害 4)外觀結(jié)構(gòu)進(jìn)一步標(biāo)準(zhǔn)化、國(guó)產(chǎn)化四.畢業(yè)設(shè)計(jì)(論文)物化成果的具體內(nèi)容及要求(具體內(nèi)容參照機(jī)械工程系畢業(yè)設(shè)計(jì)大綱及實(shí)施細(xì)則的有關(guān)要求填寫(xiě)) 1)繪制PF455S插秧機(jī)總裝圖一份 注明主要特征參數(shù),要求及各主要部裝名稱 2)繪制離合器手柄部裝圖(左和右)以及該部裝中所有零件圖(含改進(jìn)前后) 3)繪制和側(cè)離合器手柄相關(guān)的主要零件圖- 4)根據(jù)方案確定及相關(guān)計(jì)算和要求,書(shū)寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)一份,自數(shù)1萬(wàn)字左右 全部計(jì)算機(jī)會(huì)圖五. 畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃起訖日期工作內(nèi)容備 注33104.10041104.2404.25!05.28.5.3006.1006.1506.2006.2306.27實(shí)習(xí)、搜集資料整理資料、擬訂方案,寫(xiě)實(shí)習(xí)小結(jié)設(shè)計(jì)繪制部裝圖、零件圖整理、匯編設(shè)計(jì)說(shuō)明書(shū)整理錐被上交材料分小組進(jìn)行答辯六. 主要參考文獻(xiàn):1、簡(jiǎn)明農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)應(yīng)用手冊(cè) 裝桂林主編 機(jī)械工業(yè)出版社 1993.11第一版2、農(nóng)業(yè)機(jī)械 農(nóng)業(yè)機(jī)械編寫(xiě)小組 北京出版社 1978.2 第一版3、材料力學(xué) 劉鴻文 主編 高等教育出版社 1992.9 第二版4、機(jī)械設(shè)計(jì) 徐錦康 主編 高等教育出版社 1992.9 第二版5、PF455S插秧機(jī)培訓(xùn)教材 江蘇農(nóng)技推廣站 2003.5第一版6、機(jī)械設(shè)計(jì)零件手冊(cè) 高等教育出版社7、機(jī)械設(shè)計(jì)手冊(cè) 機(jī)械工業(yè)出版社8、機(jī)械原理 高等教育出版社9、機(jī)械設(shè)計(jì)課程設(shè)計(jì) 陳秀寧 編 浙江大學(xué)出版社10、互換性與測(cè)量技術(shù)基礎(chǔ) 王伯平 機(jī)械工業(yè)出版社七、其他performance , form 17 pressure comparing the performance of a double inlet cyclone with Powder Technology 145 (2004) operation. However, the increasing emphasis on environ- ment protection and gassolid separation is indicating that finer and finer particles must be removed. To meet this challenge, the improvement of cyclone geometry and per- formance is required rather than having to resort to alterna- tive units. Many researchers have contributed to large volume of work on improving the cyclone performance, by introducing new inlet design and operation variables. These include studies of testing a cyclonic fractionator for researchers, was developed, and the experimental study on addressing the effect of inlet type on cyclone performances was presented. 2. Experimental Three kinds of cyclone separators with various inlet geometries, including conventional tangential single inlet have became one of most important particle removal device that preferably is utilized in both engineering and process clean air by Lim et al. 6. In this paper, the new inlet type, which is different type of inlet from that used by former simplicity to fabricate, low cost to operate, and well adapt- ability to extremely harsh conditions, cyclone separators Keywords: Cyclone; Symmetrical spiral inlet; Collection efficiency; Pressure drop 1. Introduction Cyclone separators are widely used in the field of air pollution control and gassolid separation for aerosol sampling and industrial applications 1. Due to relative 2, developing a mathematic model to predict the collection efficiency of small cylindrical multiport cyclone by DeOtte 3, testing a multiple inlet cyclones based on Lapple type geometry by Moore and Mcfarland 4, designing and testing a respirable multiinlet cyclone sampler that minimize the orientation bias by Gautam and Streenath 5,and particle size and flow rate in this paper. Experimental result indicated that the symmetrical spiral inlet (SSI), especially CSSI inlet geometry, has effect on significantly increasing collection efficiency with insignificantly increasing pressure drop. In addition, the results of collection efficiency and pressure drop comparison between the experimental data and the theoretical model were also involved. Short communi Development of a symmetrical cyclone separator Bingtao Zhao * , Henggen Department of Environmental Engineering, Donghua University Received 28 October 2003; received in revised Available online Abstract Three cyclone separators with different inlet geometry were designed, direct symmetrical spiral inlet (DSSI), and a converging symmetrical performance characteristics, including the collection efficiency and sampling that used multiple inlet vanes by Wedding et al. * Corresponding author. Tel.: +86-21-62373718; fax: +86-21- 62373482. E-mail address: zhaobingtao (B. Zhao). Shen, Yanming Kang No. 1882, Yanan Rd., Shanghai, Shanghai 200051, China 24 February 2004; accepted 3 June 2004 July 2004 which include a conventional tangential single inlet (CTSI), a spiral inlet (CSSI). The effects of inlet type on cyclone drop, were investigated and compared as a function of cation spiral inlet to improve 4750 (CTSI), direct symmetrical spiral inlet (DSSI), and converg- ing symmetrical spiral inlet (CSSI), were manufactured and studied. The geometries and dimensions these cyclones are presented in Fig. 1 and Table 1. To examine the effects of inlet type, all other dimensions were designed to remain the same but only the inlet geometry. The pressure drops were measured between two pressure taps on the cyclone inlet and outlet tube by use of a digital by 0.151.15% and 0.402.40% in the tested velocity range. Fig. 4(a)(d) compares the grade collection efficiency of the cyclones with various inlet types at the flow rate of 3 Fig. 2. Schematic diagram of experimental system setup. B. Zhao et al. / Powder Technology 145 (2004) 475048 micromanometer (SINAP, DP1000-IIIC). The collection efficiency was calculated by the particle size distribution, by use of microparticle size analyzer (SPSI, LKY-2). Due to having the same symmetrical inlet in Model B or C, the flow rate of each inlet of multiple cyclone was equal to another and controlled by valve; two nozzle-type screw feeders were used in same operating conditions to disperse the particles with a concentration of 5.0 g/m 3 in inlet tube. The solid particles used were talcum powder obeyed by log-normal size distribution with skeletal density of 2700 kg/m 3 , mass mean diameter of 5.97 Am, and geometric deviation of 2.08. The mean atmospheric pressure, ambient temperature, and relative humidity during the tests were 99.93 kPa, 293 K, and less than 75%, respectively. 3. Results and discussion The experimental system setup is shown in Fig. 2. Fig. 1. Schematic diagram of cyclones geometries: (a) conventional tangential single inlet, Model A; (b) direct symmetrical spiral inlet, Model B; (c) converging symmetrical spiral inlet, Model C. 3.1. Collection efficiency Fig. 3 shows the measured overall efficiencies of the cyclones as a function of flow rates or inlet velocities. It is usually expected that collection efficiency increase with the entrance velocity. However, the overall efficiency of the cyclone with symmetrical spiral inlet both Models B and C was always higher than the efficiency of the cyclone with conventional single inlet Model A at the same velocity; and especially, the cyclone with CSSI, Model C has a highest overall efficiency. These effects of improved inlet geometry contribute to the increase in overall efficiency of the cyclone Table 1 Dimensions of cyclones studied (unit: mm) DD e hH B Sab 300 150 450 1200 1125 150 150 60 388.34, 519.80, 653.67, and 772.62 m /h, with the inlet velocities of11.99, 16.04,20.18, and23.85m/s,respectively. As expected, the frictional efficiencies of all the cyclones are seen to increase with increase in particle size. The shapes of the grade collection efficiency curves of all models have a so-called S shape. The friction efficiencies of the DSSI (Model B) and CSSI cyclones (Model C) are greater by 210% and 520% than that for the CTSI cyclone (Model A), respectively. This indicates that the inlet type or geometry to the cyclone plays an important role in the collection efficiency. It was expected that particles introduced to the cyclone with symmetrical spiral inlet (Models B and C) would easily be collected on the cyclone wall because they only have to move a short distance, and especially, the CSSI (Model C) changes the particle concentration distribution and makes the particle preseparated from the gas before entering the main body of cyclone. Fig. 5 compares the experimental data at a flow rate of 653.67 m 3 /h (inlet velocity of 20.18 m/s) with existing classical theories 711. Apparently, the efficiency curves based on Mothes and Loffler model and Iozia and Leiths method match the experimental curves much closer than other theories do. This result corresponds with the study carried out by Dirgo and Leith 12 and Xiang et al. 13. Fig. 3. Overall efficiency of the cyclones at different inlet velocities. velocity B. Zhao et al. / Powder Technology 145 (2004) 4750 49 Fig. 4. Grade efficiency of the cyclones at different inlet velocities. (a) Inlet (d) Inlet velocity=23.85 m/s. The comparison show that some model can predict a theoretical result that closed the experimental data, but the changes of flow pattern and particle concentration distribu- tion induced by symmetrical spiral inlet having effects on cyclone performance were not taken into account adequately in developed theories. To examine the effects of the symmetrical spiral inlet on cyclone performance more clearly, Fig. 6 was prepared, depicting the 50% cut size for all models with varying the flow rate or inlet velocity. The 50% cut size of Models C and B are lower than that of Model A at the same inlet Fig. 5. Comparison of experimental grade efficiency with theories. =11.99 m/s. (b) Inlet velocity=16.04 m/s. (c) Inlet velocity=20.18 m/s. velocity. As the inlet velocity is decreased, the 50% cut size is approximately decreased linearly. With inlet velocity 20.18 m/s, for example, the decrease rate of 50% cut size is up to 9.88% for Model B and 24.62% for Model C. This indicated that the new inlet type can help to enhance the cyclone collection efficiency. 3.2. Pressure drop The pressure drop across cyclone is commonly expressed as a number gas inlet velocity heads DH named the pressure Fig. 6. The 50% cut size of the cyclones. inlet velocity are presented in Table 2. Obviously, higher pressure drop is associated with higher Barth 5.18 B. Zhao et al. / Powder Technology 145 (2004) 475050 flow rate for a given cyclone. However, specifying a flow rate or inlet velocity, the difference of pressure drop coef- ficient between Models B, C, and A is less significant, and varied between 5.21 and 5.76, with an average value 5.63, for Model B, 5.225.76, with an average value 5.67, for Model C, and 5.165.70, with an average value 5.55, for Model A, calculated by regression analysis. This is an important point because it is possible to increase the cyclone collection efficiency without increasing the pressure drop significantly. The experimental data of pressure drop were also compared with current theories 1420, and results are presented in Table 3. The results show that the model of Alexander and Barth provided the better fit to the experimental data, although for some cyclones the models of Shepherd and Lapple and Dirgo predicted equally well. 4. Conclusions A new kind of cyclone with symmetrical spiral inlet drop coefficient, which is the division of the pressure drop by inlet kinetic pressure q g m i 2 /2. The pressure drop coeffi- cient values for the three cyclones corresponding to different Table 2 Pressure drop coefficient of the cyclones Cyclone Inlet velocity (m/s) model 11.99 16.04 A 5.16 5.18 B 5.21 5.27 C 5.22 5.35 Table 3 Comparison of pressure drop coefficient with theories Theory Shepherd Alexander First Stairmand Value 6.40 5.62 6.18 5.01 (SSI) including DSSI and CSSI was developed, and the effects of these inlet types on cyclone performance were tested and compared. Experimental results show the overall efficiency the DSSI cyclone and CSSI is greater by 0.15 1.15% and 0.402.40% than that for CTSI cyclone, and the grade efficiency is greater by 210% and 520%. In addition, the pressure drop coefficient is 5.63 for DSSI cyclone, 5.67 for CSSI, and 5.55 for CTSI cyclone. Despite that the multiple inlet increases the complicity and the cost of the cyclone separators, the cyclones with SSI, especially CSSI, can yield a better collection efficiency, obviously with a minor increase in pressure drop. This presents the possi- bility of obtaining a better performance cyclone by means of improving its inlet geometry design. References 1 Y.F. Zhu, K.W. Lee, Experimental study on small cyclones operating at high flowrates, Aerosol Sci. Technol. 30 (10) (1999) 13031315. 2 J.B. Wedding, M.A. Weigand, T.A. Carney, A 10Am cutpoint inlet for the dichotomous sampler, Environ. Sci. Technol. 16 (1982) 602606. 3 R.E. DeOtte, A model for the prediction of the collection efficiency characteristics of a small, cylindrical aerosol sampling cyclone, Aero- sol Sci. Technol. 12 (1990) 10551066. 4 M.E. Moore, A.R. Mcfarland, Design methodology for multiple inlet cyclones, Environ. Sci. Technol. 30 (1996) 271276. 5 M. Gautam, A. Streenath, Performance of a respirable multi-inlet cyclone sampler, J. Aerosol Sci. 28 (7) (1997) 12651281. 6 K.S. Lim, S.B. Kwon, K.W. Lee, Characteristics of the collection efficiency for a double inlet cyclone with clean air, J. Aerosol Sci. 34 (2003) 10851095. 7 D. Leith, W. Licht, The collection efficiency of cyclone type particle collectors: a new theoretical approach, AIChE Symp. Ser. 68 (126) (1972) 196206. 8 P.W. Dietz, Collection efficiency of cyclone separators, AIChE J. 27 (6) (1981) 888892. 9 H. Mothes, F. Loffler, Prediction of particle removal in cyclone sepa- rators, Int. Chem. Eng. 28 (2) (1988) 231240. 10 D.L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Sci. Technol. 12 (1990) 598606. 11 R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models for cyclone performance, AI ChE J. 37 (1991) 285289. 12 J. Dirgo, D. Leith, Cyclone collection efficiency: comparison of ex- perimental results with theoretical predictions, Aerosol Sci. Technol. 4 (1985) 401415. 13 R.B. Xiang, S.H. Park, K.W. Lee, Effects of dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549561. 14 C.B. Shepherd, C.E. Lapple, Flow pattern and pressure drop in cy- 20.18 23.85 average 5.45 5.70 5.55 5.57 5.76 5.63 5.67 5.76 5.67 Casal Dirgo Model A Model B Model C 7.85 4.85 5.55 5.63 5.67 clone dust collectors: cyclone without inlet vane, Ind. Eng. Chem. 32 (1940) 12461256. 15 R.M. Alexander, Fundamentals of cyclone design and operation, Proc. Aust. Inst. Min. Met. (New Series) (1949) 152153, 202228. 16 M.W. First, Cyclone dust collector design, Am. Soc. Mech. Eng. 49 (A) (1949) 127132. 17 C.J. Stairmand, Design and performance of cyclone separators, Trans. Inst. Chem. Eng. 29 (1951) 356383. 18 W. Barth, Design and layout of the cyclone separator on the basis of new investigations, Brennst. Warme Kraft 8 (1956) 19. 19 J. Casal, J.M. Martinez-Bennet, A batter way to calculate cyclone pressure drop, Chem. Eng. 90 (3) (1983) 99100. 20 J. Dirgo, Relationship between cyclone dimensions and performance, Doctoral Thesis, Harvard University, USA, 1988.
收藏