購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
1 緒論
1.1 引言
機器人是一種典型的機電一體化產(chǎn)品,仿人型機器人是機器人研究領(lǐng)域的熱點。研究仿人型機器人需要結(jié)合機械、電子、信息論、人工智能、生物學(xué)以及計算機等諸多學(xué)科知識,同時其自身的發(fā)展也促進了這些學(xué)科的發(fā)展。雙足步行機器人是仿人型機器人的一種。
1959年,世界上誕生了第一臺工業(yè)機器人,開創(chuàng)了機器人發(fā)展的新紀(jì)元。隨著科學(xué)技術(shù)的發(fā)展,仿人型機器人的研究與應(yīng)用迅猛發(fā)展。世界著名機器人專家、日本早稻田大學(xué)的加藤一郎教授說過:“機器人應(yīng)當(dāng)具有的最大特征之一是步行功能”。其中雙足行走是步行方式中自動化程度最高、最為復(fù)雜的動態(tài)系統(tǒng)。偉大的發(fā)明家愛迪生也曾說過這樣一句話:“上帝創(chuàng)造人類,兩條腿是最美妙的杰作”。雙足步行系統(tǒng)具有非常豐富的動力學(xué)特性,對步行的環(huán)境要求很低,既能在平地上行走,也能在非結(jié)構(gòu)性的復(fù)雜地面上行走,對環(huán)境有很好的適應(yīng)性。步行功能的具備為擴大機器人的應(yīng)用領(lǐng)域開辟了無限廣闊的前景。
研究雙足步行機器人的原因和目的,主要有以下幾個方面:希望研制出雙足步行機構(gòu),使它們能在許多結(jié)構(gòu)和非結(jié)構(gòu)環(huán)境中行走,以代替人進行作業(yè)或延伸和擴大人類的活動領(lǐng)域;希望更多得了解和掌握人類得步行特性,并利用這些特性為人類服務(wù),例如:人造假肢。雙足步行系統(tǒng)具有豐富的動力學(xué)特性,在這方面的研究可以拓寬力學(xué)及機器人的研究方向;雙足步行機器人可以作為一種智能機器人在人工智能中發(fā)揮重要的作用。
科幻小說和電影作品中,人們將像人一樣行走、思考、行為的機器人作為機器人研究的最高境界??茖W(xué)工作者也一直將實現(xiàn)類人行為的機器人作為工作的最高目標(biāo)去追求。步行機器人特別是雙足步行機器人的研究是整個類人機器人研究的前奏,是實現(xiàn)類人機器人的必不可少的一個環(huán)節(jié)。在具有許多優(yōu)點的步行機器人中,由于雙足步行機器人體積較小,所以他們對環(huán)境有最好的適應(yīng)性。這種機器人除結(jié)構(gòu)較簡單外,在靜、動態(tài)穩(wěn)定步行方面,都是最困難的,但這種困難并不是不能克服。實用的雙足步行機器人由兩條腿和平臺(腰部)組成。腿的作用是為平臺提供移動能力,而平臺的作用則是提供一個基礎(chǔ),以便安裝機械手、CCD攝像機、機載計算機控制系統(tǒng)和電池等。顯然,這種帶機械手的雙足步行機器人外形上更像人,能非常靈活地從事較多的工作。但是,對于這種雙足步行機器人來說,平臺的穩(wěn)定性對于有效地控制機械手末端操作器的位置和姿態(tài)是至關(guān)重要的,而兩條腿的步態(tài)又對平臺的穩(wěn)定性起決定作用。因此,如何規(guī)劃好腿的步態(tài),協(xié)調(diào)地控制兩條腿的運動以保持平臺及整個雙足步行機器人的穩(wěn)定就成為一個主要問題。雙足步行機器人可以是很復(fù)雜的系統(tǒng),當(dāng)然也可以是構(gòu)造簡單的系統(tǒng)。
1.2 機器人的發(fā)展及技術(shù)
1.2.1 機器人的發(fā)展
20世紀(jì)40年代,伴隨著遙控操縱器和數(shù)控制造技術(shù)的出現(xiàn),關(guān)于機器人技術(shù)的研究開始出現(xiàn)。60年代美國的ConsolidatedContr01公司研制出第一臺機器人樣機,并成立了Unimation公司,定型生產(chǎn)了Unimate機器人。20世紀(jì)70年代以來,工業(yè)機器人產(chǎn)業(yè)蓬勃興起,機器人技術(shù)逐漸發(fā)展為專門學(xué)哈爾濱工程大學(xué)碩十學(xué)位論文。1970年,第一次國際機器人會議在美國舉行。經(jīng)過幾十年的發(fā)展,數(shù)百種不同結(jié)構(gòu)、不同控制系統(tǒng)、不同用途的機器人已進入了實用化階段。目前,盡管關(guān)于機器人的定義還未統(tǒng)一,但一般認(rèn)為機器人的發(fā)展按照從低級到高級經(jīng)歷了三代。第一代機器人,主要指只能以“示教-再現(xiàn)”方式工作的機器人,其只能依靠人們給定的程序,重復(fù)進行各種操作。目前的各類工業(yè)機器人大都屬于第一代機器人。第二代機器人是具有一定傳感器反饋功能的機器人,其能獲取作業(yè)環(huán)境、操作對象的簡單信息,通過計算機處理、分析,機器人按照己編好的程序做出一定推理,對動作進行反饋控制,表現(xiàn)出低級的智能。當(dāng)前,對第二代機器人的研究著重于實際應(yīng)用與普及推廣上。第三代機器人是指具有環(huán)境感知能力,并能做出自主決策的自治機器人。它具有多種感知功能,可進行復(fù)雜的邏輯思維,判斷決策,在作業(yè)環(huán)境中可獨立行動。第三代機器人又稱為智能機器人,并己成為機器人學(xué)科的研究重點,但目前還處于實驗室探索階段。機器人技術(shù)己成為當(dāng)前科技研究和應(yīng)用的焦點與重心,并逐漸在工農(nóng)業(yè)生產(chǎn)和國防建設(shè)等方面發(fā)揮巨大作用??梢灶A(yù)見到,機器人將在21世紀(jì)人類社會生產(chǎn)和生活中扮演更加重要的角色。
1.2.2 機器人技術(shù)
機器人學(xué)是一門發(fā)展迅速的且具有高度綜合性的前沿學(xué)科,該學(xué)科涉及領(lǐng)域廣泛,集中了機械工程、電氣與電子工程、計算機工程、自動控制工程、生物科學(xué)以及人工智能等多種學(xué)科的最新科研成果,代表了機電一體化的最新成就。機器人充分體現(xiàn)了人和機器的各自特長,它比傳統(tǒng)機器具有更大的靈活性和更廣泛的應(yīng)用范圍。機器人的出現(xiàn)和應(yīng)用是人類生產(chǎn)和社會進步的需要,是科學(xué)技術(shù)發(fā)展和生產(chǎn)工具進化的必然。目前,機器人及其自動化成套裝備己成為國內(nèi)外備受重視的高新技術(shù)應(yīng)用領(lǐng)域,與此同時它正以驚人的速度向海洋、航空、航天、軍事、農(nóng)業(yè)、服務(wù)、娛樂等各個領(lǐng)域滲透。目前,雖然機器人的能力還是非常有限的,但是它正在迅速發(fā)展。隨著各學(xué)科的發(fā)展和社會需要的發(fā)展,機器人技術(shù)出現(xiàn)了許多新的發(fā)展方向和趨勢,如網(wǎng)絡(luò)機器人技術(shù)、虛擬機器人技術(shù)、協(xié)作機器人技術(shù)、微型機器人技術(shù)和雙足步行機器人技術(shù)等。
1.3 雙足步行機器人研究概況
1.3.1 國外研究現(xiàn)狀分析
最早系統(tǒng)地研究人類和動物運動原理的是Muybridge,他發(fā)明了電影用的獨特攝像機,即一組電動式觸發(fā)照相機,并在1877年成功地拍攝了許多四足動物步行和奔跑的連續(xù)照片。后來這種采用攝像機的方法又被Demeny用來研究人類的步行運動。從本世紀(jì)30年代到50年代,蘇聯(lián)的Bernstein從生物動力學(xué)的角度也對人類和動物的步行機理進行深入的研究,并就步行運動作了非常形象化的描述。
真正全面、系統(tǒng)地開展兩足步行機器人的研究是始于本世紀(jì)60年代.迄今,不僅形成了兩足步行機器人一整套較為完善的理論體系,而且在一些國家,如日本、美國和蘇聯(lián)等都已研制成功了能靜態(tài)或動態(tài)步行的兩足步行機器人樣機。這一部分,我們主要介紹隊60年代到1985年這一時期,在兩足步行機器人領(lǐng)域所取得的最重要進展。
在60年代和70年代,對步行機器人控制理論的研究產(chǎn)生了3種非常重要的控制方法,即有限狀態(tài)控制、模型參考控制和算法控制。這3種控制方法對各種類型的步行機器人都是適用的。有限狀態(tài)控制是由南斯拉夫的Tomovic在1961年提出來的 ,模型參考控制是由美國的Farnsworth在1975年提出來的,而算法控制則是由南斯拉夫米哈依羅·鮑賓研究所著名的機器人學(xué)專家Vukobratovic博士在1969年至1972年問提出來的。這3種控制方法之間有一定的內(nèi)在聯(lián)系。有限狀態(tài)控制實質(zhì)上是一種采樣化的模型參考控制,而算法控制則是一種居中的情況[1]。
在兩足步行機器人的發(fā)展史上,Vukobratovic博士是一個非常突出的人物。他在整個70年代就兩足步行機器人的理論研究和假肢的設(shè)計發(fā)表了很多有影響的論文。他提出了用歐拉角描述兩足步行系統(tǒng)的通用數(shù)學(xué)模型;指出了由于步行系統(tǒng)的動態(tài)性能和控制性能的特殊性,用一般控制理論不能滿意地解決人工實現(xiàn)步行的問題,并相應(yīng)地提出了算法控制的概念;研究了類人型兩足步行系統(tǒng)在單腳和雙腳支撐期機構(gòu)的特點,并建立了從運動副組合到關(guān)節(jié)力矩計算等各項運算的KINPAIR算法,分析了類人型兩足步行系統(tǒng)的姿態(tài)穩(wěn)定性,并提出了相應(yīng)的姿態(tài)控制算法;對類人型兩足步行系統(tǒng)進行了能量分析和頻率分析.此外,他還與合作者一起為截癱病人和小兒麻痹癥患者設(shè)計了一系列半動力型和動力型輔助行走裝置 。特別重要的是,他和Stepanenko博士一起在1972年提出了“零力矩點ZMP”的概念ZMP概念的提出對兩足步行機器人控制產(chǎn)生了非常重要的影響,為有效地控制兩足步行機器人的運動開辟了一條嶄新的途徑[2]。
在步態(tài)研究方面,蘇聯(lián)的Bessonov和Umnov定義了“最優(yōu)步態(tài)”,Kugushev和Jaro-
shevskij定義了自由步態(tài)。這兩種步態(tài)不僅適應(yīng)于兩足而且也適應(yīng)于多足步行機器人。其中,自由步態(tài)是相對于規(guī)則步態(tài)而言的。如果地面非常粗糙不平,那么步行機器人在行走時,下一步腳應(yīng)放在什么地方,就不能根據(jù)固定的步序來考慮,而是應(yīng)該象登山運動員那樣走一步看一步,通過某一優(yōu)化準(zhǔn)則來確定,這就是所謂的自由步態(tài)。
在兩足步行機器人的穩(wěn)定性研究方面,美國的Hemami等人曾提出將兩足步行系統(tǒng)的穩(wěn)定性和控制的簡化模型看作是一個倒立振子(倒擺),從而可以將兩足步行的前進運動解釋為使振子直立移動的問題。此外,從減小控制的復(fù)雜性考慮,Hemami等人還曾就兩足步行機器人的“降階模型”問題進行了研究。
在步行模式這方面的研究中,日本加藤一郎教授及其合作者1980年提出了“準(zhǔn)動態(tài)步行的概念 ,這是一種介于靜態(tài)步行和動態(tài)步行之間的步行方式。它既具有靜態(tài)步行的特點又具有動態(tài)步行的特點,其步速要比靜態(tài)步行快,而實現(xiàn)起來又不象動態(tài)步行那樣困難。
最早采用最優(yōu)理論來研究類人型兩足步行系統(tǒng)是美國的Chow和Jacobson。他們在1971年發(fā)表的論文中, 具有約束條件的力學(xué)模型和性能最優(yōu)準(zhǔn)則作為兩足步行優(yōu)化問題的核心,而以一種簡化模型作為研究對象。但最后,他們僅是以局部耗能最少為基礎(chǔ)得出了一個優(yōu)化結(jié)果。
前面我們曾指出Vukobratovic也對類人型兩足步行系統(tǒng)進行了能量分析,但他僅限于導(dǎo)出各關(guān)節(jié)及整個步行系統(tǒng)的功率隨時間的變化關(guān)系,并沒有過多地涉及能耗最優(yōu)這個問題.但在他的研究中,Vukobratovic得出了一個有用的結(jié)論,即步行姿態(tài)越平滑,類人型兩足步行系統(tǒng)所消耗的功率就越少。
下面介紹一下樣機研制方面的主要情況。早在50年代中期,美國通用電氣公司就制造了一臺名為“Hardiman”的步行車,但當(dāng)時的驅(qū)動和伺服控制技術(shù)顯然還不足以使Hardiman進入實用化階段。
1986年至1971年間,牛津大學(xué)的Witt等人曾制造和完善了一個兩足步行機器人。當(dāng)時他們的主要目的是為癱瘓者和下肢殘疾者設(shè)計實用的輔助行走裝置。這個機器人在平地上走得非常好,步速為0.28m/s,功率消耗約4瓦 。
1972年,日本早稻田大學(xué)的加藤一郎教授及其合作者設(shè)計的Wabot(前身為WL-5)是迄今為止最上象的一個兩足步行機器人,它除有兩條腿之外,還具有許多其它擬人的特征Wabot首次步行是在1973年,它具有一定的自律性,能完成低速度的靜態(tài)穩(wěn)定步行。
后來,加藤他們又制造了一系列兩足步行機器人,這些機器人一般都是液壓驅(qū)動的,每條腿上一般具有5個自由度,典型的步長和步行周期分別是15厘米和l5秒,并且它們都能實現(xiàn)靜態(tài)和準(zhǔn)動態(tài)步行。特別值得一提的是,這些科學(xué)家在1984年成功地使他們研制的WL-lORD兩足步行機器人實現(xiàn)了動態(tài)步行,步幅為43.18厘米,步速達(dá)到1.3步每秒。WL-10RD機器人重84公斤,在其本體上安裝了一臺Z8002微型計算機,用來控制它的步行運動。
在80年代初,東京大學(xué)的Miura和Shimoyama研制了5種類型的兩足步行機器人,它們依次被命名為BIPER-1。所有這些機器人都不能保持靜態(tài)穩(wěn)定,但在適當(dāng)?shù)目刂谱饔孟露寄軐崿F(xiàn)動態(tài)步行。BIPER-1和BIPER-2其能側(cè)行;BIPER-3是一個高蹺型機器人,腳與地面以點狀接觸,它既能側(cè)行,也能前進、后退;BIPER-4的兩條腿具有與人完全相同的自由度;而BIPER-5則與BIPER-3相似,但BIPER-5的所有儀器.如計算機等,都安裝在其本體上。
1982年,東京理工學(xué)院的Funabashi等人設(shè)計了一個名為MEG-2的兩足步行機器人,在該機器人的連桿機構(gòu)上安裝有重力和慣性力補償裝置。在1985年的實驗中,該機器人實現(xiàn)了高速步行。
此外,日本還有很多科學(xué)家和技術(shù)人員在8O年代也研制了一些兩足步行機器人。其中有的采用最優(yōu)調(diào)節(jié)器和數(shù)字控制理論來控制兩足步行機器人的運動,有的用形狀記憶合金作為關(guān)節(jié)驅(qū)動器,而有的則是研究軌跡產(chǎn)生算法或試將神經(jīng)網(wǎng)絡(luò)理論用于步行機器人運動控制。在1985年以前,樣機的研制主要是日本的科學(xué)家做出了突出的貢獻。
1.3.2 國內(nèi)研究現(xiàn)狀分析
國內(nèi)雙足步行機器人的研制工作起步較晚,我國是從20世紀(jì)80年代開始雙足步行機器人領(lǐng)域的研究和應(yīng)用的。1986年,我國開展了“七五”機器人攻關(guān)計劃,1987年,我國的“863”高技術(shù)計劃將機器人方面的研究開發(fā)列入其中。目前我國從事機器人研究與應(yīng)用開發(fā)的單位主要是高校和有關(guān)科研院所等。最初我國進行機器人技術(shù)研究的主要目的是跟蹤國際先進的機器人技術(shù),隨后取得了一定的成就。
哈爾濱工業(yè)大學(xué)自1986年開始研究雙足步行機器人,先研制成功靜態(tài)步行雙足機器人HIT-I,高 110cm,重70kg,有10個自由度,實現(xiàn)平地上的前進、左右側(cè)行以及上下樓梯的運動,步幅45cm,步速為10秒/步,后來又相繼研制成功了HIT-II和HIT-III,重42kg,高 103cm,有12個自由度,實現(xiàn)了步長24cm,步速2.3步每秒的步行。目前正在研制的HI下IV機器人,全身可有52個自由度,其在運動速度和平衡性方面都優(yōu)于前三型行走機器人[3~7]。
國防科技大學(xué)在1988年春成功地研制了一臺平面型6自由度的雙足機器人KDW-1,它能前進、后退和上下樓梯,最大步幅為40cm,步速為4步每秒,1989年又研制出空間型 KDW-II,有10個自由度,高69cm,重13kg實現(xiàn)進退、上下臺階的靜態(tài)穩(wěn)定步行以及左右的準(zhǔn)動態(tài)步行。1990年在KDW-II的平臺上增加兩個垂直關(guān)節(jié),發(fā)展成KDW-III,有12個自由度,具備了轉(zhuǎn)彎功能,實現(xiàn)了實驗室環(huán)境的全方位行走。1995年實現(xiàn)動態(tài)行走,步速0.8步每秒,步長為20cm~22cm,最大斜坡角度達(dá)13度。2000年底在KDW-III的基礎(chǔ)上研制成功我國首臺仿人形機器人“先行者”,動態(tài)步行,可在小偏差、不確定的環(huán)境行走,周期達(dá)每秒兩步,高1.4m,重20kg,有頭、眼、脖、身軀、雙臂、雙足,且具備一定的語言功能[8~13]。
上海交通大學(xué)于1999年研制的仿人形機器人SFHR,腿部和手臂分別有12和10個自由度,身體上有2個自由度。共有24個自由度,實現(xiàn)了周期3.8s,步長10cm的步行運動。機器人本體上裝有2個單軸陀螺和一個三軸傾斜計,用于檢測機器人的姿態(tài)信息,并配備了富士通公司的主動視覺系統(tǒng),是研究通用機器人學(xué)、多傳感器集成以及控制算法良好的實驗平臺。
北京理工大學(xué)在歸國博士黃強教授的帶領(lǐng)下,高起點地進行仿人形機器人研究,于2002年12月通過驗收的仿人形機器人BHR-l,高 158cm,重76kg,32個自由度,步幅0.33m,步速每小時1公里。能夠根據(jù)自身力覺、平衡覺等感知機器人自身的平衡狀態(tài)和地面高度的變化,實現(xiàn)未知地面的穩(wěn)定行走和太極拳表演,使中國成為繼日本之后,第二個研制出無外接電纜行走,集感知、控制、驅(qū)動、電源和機構(gòu)于一體的高水平仿人形機器人國家。
此外,清華大學(xué)正在研制仿人形機器人THBIP-I,高1.7m,重130kg,32個自由度,在清華大學(xué)985計劃的支持下,項目也在不斷取得進展。南京航空航天大學(xué)曾研制了一臺8自由度空間型雙足步行機器人,實現(xiàn)靜態(tài)步行功能[13,14]。
本課題源于“第一屆全國大學(xué)生機械創(chuàng)新設(shè)計大賽”中兩足行走機器人。目前,機器人大多以輪子的形式實現(xiàn)行走功能階段。真正模仿人類用腿走路的機器人還不多,雖有一些六足、四足機器人涌現(xiàn),但是兩足機器人還是鳳毛麟角。我們這個課題,探索設(shè)計僅靠巧妙的機械裝置和簡單的控制系統(tǒng)就能實現(xiàn)模擬人類行走的機器人。其分功能有:交替邁腿、搖頭、擺大臂、擺小臂。
2 雙足機器人本體結(jié)構(gòu)設(shè)計
2.1 引言
兩足步行機器人是研究兩足步行的實驗對象,不同的兩足步行機器人在自由度、驅(qū)動方式、重量、高度、結(jié)構(gòu)特征等方面都存在很大的差異。機器人的結(jié)構(gòu)不同,其控制方式也有所區(qū)別。為了對兩足步行機器人進行深入的研究,使其實現(xiàn)預(yù)定的步行功能,必須對其機構(gòu)有深入的了解和認(rèn)識。
2.2 雙足機器人的結(jié)構(gòu)分析
兩足步行機器人是對人類自身的模仿,但是人類總共有上肢52對,下肢62對,背部112對,胸部52對,腰部8對,頸部16對,頭部25對之多的肌肉。從目前的科學(xué)發(fā)展情況來看,要控制具有400個雙作用式促進器的多變量系統(tǒng)是不可能的,因此,在設(shè)計步行機械時,人們只考慮移動的基本功能。例如,只考慮在平地或者具有已知障礙物的情況下的步行[15]。
鄭元芳博士從仿生學(xué)的角度對類人機器人的腿部自由度配置進行了深入的研究,得出關(guān)節(jié)扭矩最小條件下兩足步行機器人的自由度配置。他認(rèn)為髖部和踝部設(shè)兩個自由度,可使機器人在不平地面上站立,髖部再加一個扭轉(zhuǎn)自由度,可改變行走方向,踝關(guān)節(jié)處加一個旋轉(zhuǎn)自由度可使腳板在不規(guī)則表面上落地,這樣機器人的腿部需要有7×2個自由度(髖關(guān)節(jié)3個,膝關(guān)節(jié)1個,踝關(guān)節(jié)3個)。
但是,無論現(xiàn)在的兩足步行機器人還是擬人機器人都還只能在規(guī)則路面上行走,所以各研究機構(gòu)都選擇了6×2個自由度(髖關(guān)節(jié)3個,膝關(guān)節(jié)1個,踝關(guān)節(jié)2個),如:哈爾濱工業(yè)大學(xué)的HIT-III、國防科技大的“先行者”、本田公司的ASIMO和索尼公司的SDR和QRIO。
具有6×2個自由度的機器人的機械結(jié)構(gòu)和控制都特別的復(fù)雜。按照在能完成研究目標(biāo)的情況下,自由度最少的設(shè)計原則,在過去的四十年中,為了不同的研究目標(biāo),人們設(shè)計了許多具有不同自由度的兩足步行機器人,按照行走過程中的穩(wěn)定方式,兩足步行機器人一般分為三類:
(1)靜態(tài)機器人,這類步行機器人的COM(Cenier of Mass)始終處于支撐哈爾濱工程大學(xué)碩士學(xué)位論文多邊形(單腳支撐期為支撐腳的輪廓線,雙腳支撐期為兩只腳的外邊沿所圍成的凸多邊形)內(nèi),所以只能實現(xiàn)靜態(tài)行走。
(2)動態(tài)機器人,這類步行機器人有踝關(guān)節(jié),依靠踝關(guān)節(jié)來保證它的ZMP點(Zero Momeni Cenier)始終處于支撐多邊形內(nèi),所以可以實現(xiàn)靜態(tài)行走和動態(tài)行走。
(3)完全動態(tài)機器人,這類步行機器人的踝關(guān)節(jié)沒有驅(qū)動,甚至沒有踝關(guān)節(jié)。所以,支撐多邊形在單腳支撐期縮小成一個點,在雙腳支撐期縮小為一條線段,所以,這類機器人不能保持靜態(tài)平衡,只能實現(xiàn)動態(tài)行走。
下面,我們按照自由度數(shù)從少到多的原則,參考曾經(jīng)成功實現(xiàn)的兩足步行機器人模型,分析不同結(jié)構(gòu)的兩足步行機器人的特點。為了計算機器人的自由度,我們將采用以下原則:假設(shè)機器人固定于一端,考慮單腳支撐機器人開鏈結(jié)構(gòu)情況下的自由度。同時就機器人雙腳支撐閉鏈結(jié)構(gòu)情況下的冗余自由度進行分析。自由度數(shù)最少的兩足步行機器人只有一個自由度,如圖2.1所示。
圖2.1這類機器人沒有軀干,兩條腿直接鉸鏈在一起。這類機器人理論上只有一個自由度,實際上,為了防止擺動腿擺動時和地面干涉,這兩條腿都必須是可以伸縮的。加上這兩個平移自由度,這個機器人實際上有3個自由度。它的運動學(xué)模型是平面的,沒有側(cè)向運動,在徑向平面內(nèi)的運動象一個兩腳圓規(guī)。在雙腳支撐期,沒有冗余自由度。這類兩足步行機器人不能保持靜態(tài)平衡,屬于完全動態(tài)機器人,在僅受重力作用時,可以在斜面上行走。
圖2.1 一個自由度的兩足步行機器人
圖2.2表示的是有四個自由度的兩足步行機器人的結(jié)構(gòu)。這類機器人由一個軀干和兩條變結(jié)構(gòu)的腿組成。這個機器人的運動學(xué)模型也是平面的,沒有側(cè)向運動,為了防止側(cè)向傾倒,兩只固定在小腿上的腳在和徑向面垂直的方向上排列。徑向面內(nèi)的運動包括5個連桿(軀干和兩條變結(jié)構(gòu)的腿)和4個自由度。這類機器人屬于完全動態(tài)機器人,它可以在水平面上沿直線行走幾步,然后就會因為擺動腿著地時的沖擊過大而跌倒。
圖2.2 四個自由度的兩足步行機器人
圖2.3表示的是具有八個自由度的兩足步行機器人。這類機器人由一個軀干和兩條腿組成,髖關(guān)節(jié)和膝關(guān)節(jié)各有一個前向自由度,踝關(guān)節(jié)有一個前向自由度和一個側(cè)向旋轉(zhuǎn)自由度。它在側(cè)向面的運動是一個倒立擺模型,像一個只有踝關(guān)節(jié)一個自由度的剛體,這個側(cè)向關(guān)節(jié)使它可以側(cè)向平衡。在徑向面的運動包括7個連桿和6個關(guān)節(jié)。這類機器人可以在水平地面和斜坡上行走,并且可以上下樓梯。但是由于只有踝關(guān)節(jié)處的一個側(cè)向關(guān)節(jié),所以對側(cè)向關(guān)節(jié)驅(qū)動電機的性能和控制精度都要求較高,往往會側(cè)向傾倒。
圖2.3 八個自由度的兩足步行機器人
真正實現(xiàn)擬人行走的機器人是具有十二個自由度的兩足步行機器人,如圖2.4所示,這類機器人艘關(guān)節(jié)有3個自由度,膝關(guān)節(jié)有1個自由度,踝關(guān)節(jié)有2個自由度。在側(cè)向面內(nèi)的運動包括5個連桿和4個自由度,在徑向面內(nèi)的運動包括7個連桿和6個自由度。由于髖關(guān)節(jié)有繞豎直軸轉(zhuǎn)動的自由度,所以這類機器人可以轉(zhuǎn)彎。在雙足支撐期,這類步行機器人具有6個冗余自由度。這類兩足機器人屬于動態(tài)機器人,可以在普通的平整地面(塑料瓷磚、鋪砌地面或者草地)上和平整的斜坡上行走,還可以上下樓梯,側(cè)向行走,后退和轉(zhuǎn)彎。并且這類機器人可以方便地在上體增加胳膊和頭頸,已經(jīng)為研究者廣泛接受。
圖2.4 具有十二個自由度的兩足步行機器人
通過上面的分析,可以看出,兩足步行機器人是從完全動態(tài)機器人發(fā)展到動態(tài)機器人的。大部分兩足步行機器人在雙腳支撐期都可以順利地將重心從一只腳轉(zhuǎn)移到另一只腳。但是,相對地,在單足支撐期有許多問題,不管機器人結(jié)構(gòu)怎么樣,都受到擺動腿著地時的巨大的沖擊,從而無法保證側(cè)向的平衡,尤其是沒有膝關(guān)節(jié)的機器人。解決擺動腿著地時的沖擊是兩足步行機器人研究的一個重要的課題。
2.3雙足機器人的自由度配置
綜上所述,我們設(shè)計了一個取名(X-W-Robot)即XWR型的雙足步行機器人模型,如圖2.6所示。顯著的結(jié)構(gòu)特征就是采用多關(guān)節(jié)型結(jié)構(gòu)。行走機構(gòu)能實現(xiàn)平地前后行、爬斜坡等功能。動力源采用舵機直接驅(qū)動,這樣不但可以實現(xiàn)結(jié)構(gòu)緊湊、傳動精度高以及大大增加關(guān)節(jié)所能達(dá)到的最大角度,而且驅(qū)動源全為電機,便于集中控制和程序化控制。
圖2.6 雙足步行機器人模型
圖2.6模仿人類,肩關(guān)節(jié)三個自由度,前向和側(cè)向自由度,一般不考慮轉(zhuǎn)動的自由度。肘關(guān)節(jié)兩個自由度前向和側(cè)向自由度,腕關(guān)節(jié)一個自由度。踝關(guān)節(jié)有兩個自由度,前向和側(cè)向自由度:膝關(guān)節(jié)只有一個前向自由度,髖關(guān)節(jié)處要模擬人類髖關(guān)節(jié)行為理論上要求有三個正交的自由度,但在機器人直線前進時只需要正交的前向和側(cè)向自由度,同樣不考慮。關(guān)節(jié)編號如表2.1所示。
表2.1 機器人關(guān)節(jié)編號
關(guān)節(jié)標(biāo)號
對應(yīng)關(guān)節(jié)
運動范圍/°
關(guān)節(jié)標(biāo)號
對應(yīng)關(guān)節(jié)
運動范圍/°
1
左踝關(guān)節(jié)側(cè)向
-30~30
2
左踝關(guān)節(jié)前向
-30~30
3`
左膝關(guān)節(jié)
-90~10
4
左髖關(guān)節(jié)前向
-30~80
5
左髖關(guān)節(jié)側(cè)向
-30~30
6
左腿轉(zhuǎn)彎關(guān)節(jié)
-60~60
7
右腿轉(zhuǎn)彎關(guān)節(jié)
-60~60
8
右髖關(guān)節(jié)側(cè)向
-30~30
9
右髖關(guān)節(jié)前向
-30~80
10
右膝關(guān)節(jié)
-90~10
11
右踝關(guān)節(jié)前向
-30~0
12
右踝關(guān)節(jié)側(cè)向
-30~30
雙足步行機器人的一個主要問題就是雙足動態(tài)步行的固有不穩(wěn)定性。為了使其穩(wěn)定行走并能夠做靈活的仿人動作,機器人本體設(shè)計和行走步態(tài)規(guī)劃都很重要。在進行機器人本體設(shè)計時需要著重考慮的問題有關(guān)節(jié)驅(qū)動力矩的限制,主要機構(gòu)的剛度,擺動腿著地時沖擊載荷對機器人本體可能帶來的損壞,桿件間連接,機體重量、材料以及易于操作維修等等。
依據(jù)仿生學(xué)原理,肢體的設(shè)計長度要盡量與人的肢體長度比例相近,為了提高行走穩(wěn)定性,將機器人的兩足設(shè)計得較大。為了簡化運動學(xué)和動力學(xué)計算,踝關(guān)節(jié)和髖關(guān)節(jié)處采用雙關(guān)節(jié)交叉結(jié)構(gòu),減弱了關(guān)節(jié)藕合程度及非線性,可以近似認(rèn)為前向平面與側(cè)向平面內(nèi)的運動是解藕的。
材料的選取要本著重量輕,高剛度的原則。機器人本體主體材料選用鋁合金,這種材料重量輕、硬度高。
2.4 驅(qū)動方式的選擇和舵機工作原理
2.4.1 驅(qū)動方式的選擇
驅(qū)動器用于驅(qū)動機構(gòu)本體各關(guān)節(jié)的運動功率。目前驅(qū)動方式主要有氣動、液壓和伺服電機。驅(qū)動器在雙足步行機器人中的作用就相當(dāng)于人體的肌肉,如果把連桿以及關(guān)節(jié)想象為機器人的骨骼,那么驅(qū)動器就起到肌肉的作用,它通過移動或轉(zhuǎn)動連桿來改變機器人的構(gòu)型。驅(qū)動器必須有足夠的功率對負(fù)載加速或者減速。同時,驅(qū)動器本身要精確、靈敏、輕便、經(jīng)濟、使用方便可靠且易于維護。
目前己經(jīng)有很多種驅(qū)動器,常用的有以下幾種:
(1)電動機:舵機、伺服電機、步進電機、直接驅(qū)動電機;
(2)液壓驅(qū)動器;
(3)氣壓驅(qū)動器;
(4)形狀記憶合金驅(qū)動器;
(5)磁致伸縮驅(qū)動器等。
液壓驅(qū)動是由高精度的剛體和活塞一起完成的?;钊蛣傮w采用滑動配合,壓力油從液壓缸的一端進入,把活塞推向液壓缸的另一端,調(diào)節(jié)液壓缸內(nèi)部活塞兩端的液體壓力和進入液壓缸的油量即可控制活塞的運動。以前在大型的工業(yè)機器人系統(tǒng)中,液壓系統(tǒng)使用非常普遍,它具有驅(qū)動力矩大,功率重量比較高,工作平穩(wěn)可靠,系統(tǒng)響應(yīng)速度快以及傳動中的力、速度、易于實現(xiàn)自動控制等特點;但是也存在成本高、重量大、工藝復(fù)雜以及可能發(fā)生泄漏甚至高溫爆炸等缺點,同時因其固有的笨重性,不宜用作雙足步行機器人的驅(qū)動器。
氣動具有成本低、控制簡單的特點。氣動裝置在原理上和液壓系統(tǒng)非常相似,它以壓縮空氣為氣源驅(qū)動氣缸做直線或旋轉(zhuǎn)運動,并用人工或電磁閥哈爾濱工程大學(xué)碩士學(xué)位論文進行控制。氣動調(diào)節(jié)閥的制造精度要求沒有液壓元件高,易于高速控制,無污染,但由于位置控制困難,只能用于1/2自由度(受限的關(guān)節(jié),被限定為幾個可能的值)的開關(guān)類型關(guān)節(jié),實現(xiàn)插入、點位搬運等簡單操作,并且其工作穩(wěn)定性差,壓縮空氣需要除水。液壓驅(qū)動與氣壓驅(qū)動不能實現(xiàn)自帶能源,更直接決定了其難于應(yīng)用到雙足步行機器人系統(tǒng)中。
步行機器人各個關(guān)節(jié)都是旋轉(zhuǎn)副。在廉價的計算機問世之前,控制旋轉(zhuǎn)運動的主要困難是計算量大,所以當(dāng)時認(rèn)為采用直線驅(qū)動方式比較好。今天,電機驅(qū)動和控制的費用已經(jīng)大大降低,大功率晶體管己經(jīng)廣泛使用,只需要采用幾個晶體管就可以驅(qū)動一臺大功率伺服電機。同樣,微型計算機的價格也越來越便宜,計算機費用在機器人總費用中所占的比例大大降低。甚至在每個關(guān)節(jié)或自由度中都采用一個微處理器?;谏鲜龇治隹梢钥闯?,電機驅(qū)動具有成本低、精度高、易于控制、可靠且維修方便等特點,是最常用的機器人驅(qū)動器。
直接驅(qū)動電動機,形狀一記憶合金等驅(qū)動器目前還處于研究和開發(fā)階段,在不遠(yuǎn)的將來會變得非常有用。本雙足步行機器人采用舵機直接驅(qū)動。舵機是一種最早應(yīng)用在航模運動中的動力裝置,它的控制信號是一個脈寬調(diào)制信號,所以很方便和數(shù)字系統(tǒng)進行接口。只要能產(chǎn)生標(biāo)準(zhǔn)的控制信號的數(shù)字設(shè)備都可以用來控制舵機,比如PLC、單片機等。而且舵機體積緊湊,便于安裝,輸出力矩大,穩(wěn)定性好,控制簡單,所以舵機己經(jīng)廣泛地應(yīng)用于機器人領(lǐng)域。
2.4.2 舵機的工作原理
機器人的動力來源都是舵機,機器人控制系統(tǒng)主要控制的對象就是舵機,對舵機必須有一個清華粗的認(rèn)識,舵機是一種位置伺服的驅(qū)動器,適用于那些需要角度不斷變化并具有保持力矩的控制系統(tǒng)。舵機的工作原理是:控制電路板接受來自信號線的控制信號,控制電動機轉(zhuǎn)動,電動機帶動一系列齒輪組,減速后傳動至輸出舵盤。多級的輸出軸和位置反饋電位器是相連的,舵盤轉(zhuǎn)動的同時,帶動位置反饋電位器,電位器將輸出一個電壓信號到控制電路板,進行反饋,然后控制電路板根據(jù)所在位置決定電動機的轉(zhuǎn)動方向和速度,從而達(dá)到目標(biāo)停止。
控制信號由接受機的通道進入信號調(diào)制芯片,獲得只留偏置電壓。它內(nèi)部有一個基準(zhǔn)電路,產(chǎn)生周期為20ms,寬度為1.5ms的基準(zhǔn)信號,將獲得的直流偏置電壓與電位器的電壓比較,獲得電壓差輸出。最后,電壓差的正負(fù)輸出到電動機驅(qū)動芯片,決定電動機的正反轉(zhuǎn)。當(dāng)電動機轉(zhuǎn)讀一定時,通過級聯(lián)減速齒輪帶動電位器旋轉(zhuǎn),使得電壓差為0,電動機停止轉(zhuǎn)動。舵機結(jié)構(gòu)由如下組成。
(1)電動機:為舵機提供動力。
(2)減速箱:將電動機的高轉(zhuǎn)速降低,并獲得打的轉(zhuǎn)矩。
(3)電位器:為系統(tǒng)提供輸出軸的反饋。
(4)電子控制板: 用來分析控制信號和反饋位置直接的關(guān)系,控制電動機正傳、反轉(zhuǎn)還是停機。
3 雙足行走機器人的3D圖
3.1 總體結(jié)構(gòu)PRO/E圖及實物圖
雙足行走機器人由42個鋁合金材質(zhì)的零件,17臺舵機,145個螺母螺栓,若干導(dǎo)線,和AVR控制板等組成,理論高約385mm,寬約242mm。
自由度從廣義上來說就是在某一方向上能夠旋轉(zhuǎn)或移動。它是機器人性能中的一個重要的參數(shù),和舵機聯(lián)系在一起。一般來說,有多少個舵機就有多少個自由度。在設(shè)計機器人的機械結(jié)構(gòu)時,要考慮到機器人的仿人特點。在每個關(guān)節(jié)處都要設(shè)立自由度,那樣才能完成類似人的動作。
頭部僅一個自由度,轉(zhuǎn)動的自由度。肩關(guān)節(jié)三個自由度,前向和側(cè)向自由度,不考慮轉(zhuǎn)動的自由度。肘關(guān)節(jié)兩個自由度前向和側(cè)向自由度,腕關(guān)節(jié)一個自由度。踝關(guān)節(jié)有兩個自由度,前向和側(cè)向自由度:膝關(guān)節(jié)只有一個前向自由度,髖關(guān)節(jié)處要模擬人類髖關(guān)節(jié)行為理論上要求有三個正交的自由度,但在機器人直線前進時只需要正交的前向和側(cè)向自由度,同樣不考慮。模型和實物見圖3.1、3.2和3.3所示。
(a) 雙足行走機器人正面PRO/E圖 (b) 雙足行走機器人正面實物圖
圖3.1 雙足行走機器人正面
(a) 雙足行走機器人反面PRO/E圖 (b) 雙足行走機器人反面實物圖
圖3.2 雙足行走機器人反面
圖3.3 雙足行走機器人側(cè)面
3.2 臂部結(jié)構(gòu)PRO/E及實物圖
雙足行走機器人臂部由6個零件,2臺舵機和若干螺釘導(dǎo)線組成,理論長約175mm,高約50mm。
上肢有6個自由度,分別是肩部兩個自由度和肘部一個自由度。肩部兩個自由度分別控制胳膊前后旋轉(zhuǎn)和上下擺動,肘部一個自由度控制上下擺動。
安裝前將舵機初始的角度設(shè)定在90°,這樣有利于上肢有擺動的余地。因此舵機最大角度是180°。當(dāng)把安裝角度設(shè)定在90°時,與配件相配合不會放生干涉,可以順利的完成簡單的甩大臂和甩小臂等動作。見圖3.4所示。
(a) 雙足行走機器人臂部PRO/E圖
(b) 雙足行走機器人臂部實物圖
圖3.4 雙足行走機器人臂部圖
3.3 部分零件PRO/E圖及實物圖
“輝盛”MG945舵機。如圖3.5所示。
圖3.5 舵機
此零件為鋁制,長55mm,寬50mm,高16mm。主要用于連接兩個舵機,中間2個孔用于連接圖3.7所示零件盒舵機。相對的3個孔是用來連接舵機的軸,其中單個孔是連接舵機軸,2個孔用來連接齒輪。如圖3.6所示。
(a) 雙足行走機器人臂部零件PRO/E圖 (b) 雙足行走機器人臂部零件實物圖
圖3.6 臂部零件
此零件為鋁制,長62mm,寬20mm,高32mm。如圖3.7所示。主要用于固定舵機,如圖3.7(b)所示。用4個螺栓使舵機緊緊的固定在此零件上。然后通過上面的零件和2個螺栓把圖3.7所示的兩個舵機連接在一起,組成了臂部的主體部分。
(a) 雙足行走機器人臂部零件PRO/E圖 (b) 雙足行走機器人臂部零件實物圖
圖3.7 臂部零件圖
手部零件如圖3.8所示。
圖3.8 手
4 雙足行走機器人的制作
4.1 機器人舵機的調(diào)制
為了表現(xiàn)機器人擬人特性,當(dāng)通電以后要讓機器人處于立正狀態(tài)也稱作初始位置(Homeposition)。初始位置是機器人類似于人類,在重力的作用下,正處于能量最低的消耗狀態(tài)。 每個機器人組裝完畢后,首先調(diào)試出的就是初始位置狀態(tài)。如圖3.1和如圖3.2分別是處于初始位置的正面和側(cè)面圖。
舵機的初始角度是在安裝時各個舵機所處的角度。一般的情況下,我們都將舵機調(diào)節(jié)為90°,這樣便于安裝。安裝時,我有這樣的體會:不讓胳膊處于伸直狀態(tài),讓它處于垂下狀態(tài)和軀干上的舵機連接。如果這樣就會發(fā)現(xiàn),剛安裝的胳膊不能夠舉過頭部,需要重新安裝。因為剛才安裝的兩個舵機發(fā)生了運動干涉,各個舵機具有耦合關(guān)系,雖然兩個舵機均處于90°的狀態(tài),但是安裝以后兩個舵機的活動空間發(fā)生了變化。
機器人的初始姿態(tài)是指將各個舵機連接在一起時機器人所處的姿態(tài)。在將胳膊和大腿與軀干連接時,舵機的初始角度都是90°,但是沒有按初始的姿態(tài)安裝,可能就會產(chǎn)生某一個舵機活動干涉,不能完成類人動作。
4.2 雙足行走機器人制作的前期工作
前期我們小組認(rèn)真查閱機器人的資料,我們分析了機器人所需的材料后,我們買了如下所需的材料。
(1)雙足行走機器人最主要的零件就是舵機,我們在南京購買到。如圖4.1所示。
圖4.1 “輝盛”MG945舵機
“輝盛”MG945舵機參數(shù)如表4.1所示。
表4.1 “輝盛”MG945舵機參數(shù)
尺寸
重量
速度
扭力
使用電壓
40.8×9.9×37.3mm
56.3g
0.24sec/60度
12kg/cm
4.8V~7.2V
(2) 鋁制板是在泰州購買到,長度為1.5m,寬度為0.4m,厚度約為1mm。還有所需若干螺栓螺母。我們還購買了若干工具。如尖嘴鉗、銼刀一套。
(3) 雙足行走機器人的零件是先畫了簡易的圖紙,去廠里拜訪了工人師傅一起完成了制作,主要是采用了線切割機進行切割,然后在用折彎機精確做成零件。
4.3 機器人組裝
機器人的組織是將17臺舵機以搭積木的方式搭成人形。機體大部分是由舵機組成的,各個舵機之間是由一些板金件連接而成,組裝順序按如下7步順序。
(1) 用螺釘先將安裝的配件單個組裝。
(2) 用螺釘將配件和舵機組裝在一起,如圖4.1所示。注意在安裝腳部和臂部舵機時,首先將舵機的外殼放在里面,然后將舵機的數(shù)據(jù)線從配件的側(cè)面方孔穿過。
圖4.1 小臂
(3) 組裝機器人的兩個上肢,每個上肢有2個舵機組成,具有2個自由度,如圖4.2所示。安裝前將舵機初始的角度設(shè)定在90°,這樣有利于上肢有擺動的余地。因此舵機最大角度是180°。當(dāng)把安裝角度設(shè)定在90°時,與配件相配合不會發(fā)生干涉,能完成一些簡單的甩大臂和甩小臂等動作。
圖4.2 臂部
(4) 組裝機器人的兩個下肢,每個下肢有4個人舵機組成,如圖4.3所示。組裝機器人的軀干,由4個舵機組成,控制胳膊前后旋轉(zhuǎn)和大腿左右擺動。
圖4.3 腿部
(5) 組裝機器人的軀干,由4個舵機組成,具有4個自由度如圖4.3所示。安裝前將舵機初始的角度設(shè)定在90°,在安裝時,先從一面開始安裝,這樣有利于緊固螺釘。此處由于受到空間的限制,操作比較困難,那么在安裝時一定要注意緊固每個螺釘。
圖4.3 軀干
(6) 安裝機器人頭。先將上肢兩個舵機和機器頭舵機的數(shù)據(jù)放在好,這樣有利于整體布置數(shù)據(jù)。然后用4個螺釘緊固住。
(7) 組裝成一個整體,分別將上肢與軀干連接在一起。注意安裝時,大腿是處于并攏狀態(tài),胳膊處于伸直狀態(tài)。
在組裝前,首先要有整體的布局,然后再分步組裝。
組裝好了實物后,此機器人能簡單的完成向搖頭、前行走、向后行走、甩大臂和甩小臂燈運動,但是還不能在有障礙物的地面、不平整的地面上行走走。機器人在運動時機器人自身的穩(wěn)定性還不怎么好,還需要更好的優(yōu)化結(jié)構(gòu)和選擇更好的材料,使機器人的穩(wěn)定性更好。
結(jié)束語
兩足機器人的研制開始于本世紀(jì)60年代末,雖然只有四十多年的歷史。然而,兩足機器人的研究工作進展迅速,國內(nèi)外許多學(xué)者正從事于這一領(lǐng)域的研究,如今已成為機器人技術(shù)領(lǐng)域的主要研究方向之一。
本章首先介紹了兩足行走機器人的結(jié)構(gòu)和制作過程,此雙足行走機器人能簡單的實現(xiàn)前后運動,甩大臂,甩小臂等運動。
在現(xiàn)有工作的基礎(chǔ)上,應(yīng)當(dāng)繼續(xù)進行以下研究:
復(fù)雜運動的實現(xiàn):規(guī)劃出仿人機器人在快速動態(tài)步行中拐彎、乃至跑動和起跳的步態(tài)。轉(zhuǎn)彎動作的步態(tài)規(guī)劃應(yīng)考慮兩個垂直平面的禍合作用,還應(yīng)考慮擺動腳的沖擊。奔跑時,由于擺動腳離地時速度較高,所以帶來的沖擊也比較大,可以考慮采取在腳底板加軟墊以及減小機器人的質(zhì)心在豎直方向的變化幅度、快慢等措施來減小沖擊。
本文所提出的機器人可以實現(xiàn)幾個簡單的運動,但考慮到時間緊促,還不是很完善。比如結(jié)構(gòu)方面還不是非常堅固和牢靠,有待進行更加完善;在用軟件控制時,軟件還不是那么穩(wěn)定,有時會互相干擾;還有在穩(wěn)定性方面還不是做的很好,還需改進設(shè)計和零件的進一步精確等。在實際制作中,還要根據(jù)實際情況修改己有的理論。
在這3個月來我們小組在知道老師劉老師的指導(dǎo)和幫助下,大家齊心協(xié)力,共同努力,為了同一個目標(biāo)奮斗。在這之間我學(xué)會了在團隊里相互合作,使自己得到了鍛煉,我相信會使我受益匪淺。
致 謝
在即將完成畢業(yè)設(shè)計階段的學(xué)習(xí)之際,我首先特別感謝導(dǎo)師劉艷老師1年來對我的無限關(guān)懷和悉心指導(dǎo)。尤其在我最需要幫助的時候,導(dǎo)師給予我方方面面的照顧,使我能夠順利完成學(xué)業(yè)。留言老師嚴(yán)謹(jǐn)務(wù)實的工作作風(fēng)、精益求精的治學(xué)態(tài)度、循循善誘的悉心教導(dǎo),使我受益非淺、能夠?qū)W有所成;不僅學(xué)到了許多知識,更重要的是學(xué)到了思考問題、解決問題的方法及嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。論文研究工作的完成,不僅是我的辛勞付出,同時也傾注了導(dǎo)師的心血與關(guān)懷。在此向?qū)熈粞岳蠋熤乱灾孕牡母兄x!
同時感謝所有關(guān)心、愛護、和幫助我的老師、同學(xué)和朋友們,感謝一起共同學(xué)習(xí)組友許峰、黃俊、徐昕晏、吳玉坤對我的幫助。
最后,謹(jǐn)將此文獻給養(yǎng)育我健康成長的父母,感謝他們多年來在生活上、精神上、物質(zhì)上給予我的支持、關(guān)心和鼓勵,謝謝他們的付出和為我所做的一切。
參 考 文 獻
[1] 張永學(xué). 雙足機器人步態(tài)規(guī)劃及步行控制研究[D]. 哈爾濱工業(yè)大學(xué)博士學(xué)位論文. 2001. 1~60.
[2] Mae GeerT. Passive Dynamie Walking of Roboties Researeh[D]. 1990,
9(2): 62~82.
[3] 劉志遠(yuǎn). 兩足機器人動態(tài)行走研究[D]. 哈爾濱工業(yè)大學(xué)博士論文. 1991.
[4] 劉志遠(yuǎn),戴紹安,裴潤,張栓,傅佩深. 零力矩點與兩足機器人動態(tài)行走穩(wěn)
定性的關(guān)系[J]. 哈爾濱工業(yè)大學(xué)學(xué)報. 1994,vol.26(1):38~42.
[5] 紀(jì)軍紅. HIT-I雙足步行機器人步態(tài)規(guī)劃研究[D]. 哈爾濱工業(yè)大學(xué)博士論
文,2000:15~71.
[6] 麻亮,紀(jì)軍紅,強文義,傅佩深. 基于力矩傳感器的雙足機器人在線模糊步
態(tài)調(diào)整器設(shè)計[J]. 控制與決策. 2000,Vol.15(6):734~736.
[7] 竺長安. 兩足步行機器人系統(tǒng)分析、設(shè)計及運動控制[D]. 國防科技大學(xué)博
士論文. 1992.
[8] 馬宏緒. 兩足步行機器人動態(tài)步行研究[D]. 國防科技大學(xué)博士論文. 1995.
[9] 馬宏緒,應(yīng)偉福,張彭. 兩足步行機器人姿態(tài)穩(wěn)定性分析[J]. 計算技術(shù)與
自動化. 1997,vol.16(3):14~18.
[10] 馬宏緒,張彭,張良起.兩足步行機器人動態(tài)步行的步態(tài)控制與實時時位控
制方法機器人. 2005,vo120(l):10~18.
[11] 繩濤,馬宏緒,王越. 仿人機器人未知地面行走控制方法研究[N]. 華中科
技大學(xué)學(xué)報. 2004年31期:161~163.
[12] 姜山,程君實,陳佳品,包志軍. 基于遺傳算法的兩足步行機器人步態(tài)優(yōu)
化[J].上海交通大學(xué)學(xué)報. 1999,vo1.33(10): 1280~1283 .
[13] 包志軍. 仿人型機器人運動特性研究[D]. 上海交通大學(xué)博士論文 .2000:
14-48.
[14] <美> Saeed B,Niku著. 機器人學(xué)導(dǎo)論一分析、系統(tǒng)及應(yīng)用[M]. 孫富春,
朱紀(jì)洪,劉國棟等譯. 第二版. 北京:電子工業(yè)出版社,2004.
[15] 柳洪義,宋偉剛. 機器人技術(shù)基礎(chǔ)[M]. 北京:冶金工業(yè)出版社,2002.
[16] 張志通等. 掌握和精通 matlab[M]. 北京: 北京航天航空大學(xué)出版社,
1997.