吊耳沖壓模具設計【復合模-T形件】【含11張CAD圖紙和文檔全套】
購買設計請充值后下載,資源目錄下的文件所見即所得,都可以點開預覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預覽圖都是店主用電腦打開后截圖的,具體請見文件預覽,有不明白之處,可咨詢QQ:1304139763
【中文4900字】沖壓變形沖壓變形工藝可完成多種工序,其基本工序可分為分離工序和變形工序兩 大類。分離工序是使坯料的一部分與另一部分相互分離的工藝方法,主要有落料、 沖孔、切邊、剖切、修整等。其中有以沖孔、落料應用最廣。變形工序是使坯 料的一部分相對另一部分產生位移而不破裂的工藝方法,主要有拉深、彎曲、 局部成形、脹形、翻邊、縮徑、校形、旋壓等。從本質上看,沖壓成形就是毛坯的變形區(qū)在外力的作用下產生相應的塑性 變形,所以變形區(qū)的應力狀態(tài)和變形性質是決定沖壓成形性質的基本因素。因 此,根據(jù)變形區(qū)應力狀態(tài)和變形特點進行的沖壓成形分類,可以把成形性質相 同的成形方法概括成同一個類型并進行系統(tǒng)化的研究。絕大多數(shù)沖壓成形時毛坯變形區(qū)均處于平面應力狀態(tài)。通常認為在板材表面上 不受外力的作用,即使有外力作用,其數(shù)值也是較小的,所以可以認為垂直于 板面方向的應力為零,使板材毛坯產生塑性變形的是作用于板面方向上相互垂 直的兩個主應力。由于板厚較小,通常都近似地認為這兩個主應力在厚度方向 上是均勻分布的?;谶@樣的分析,可以把各種形式沖壓成形中的毛坯變形區(qū) 的受力狀態(tài)與變形特點,在平面應力的應力坐標系中(沖壓應力圖)與相應的兩 向應變坐標系中(沖壓應變圖)以應力與應變坐標決定的位置來表示。也就是說, 沖壓應力圖與沖壓應變圖中的不同位置都代表著不同的受力情況與變形特點 (1)沖壓毛坯變形區(qū)受兩向拉應力作用時,可以分為兩種情況:即 0 t=0 和 0, t=0。再這兩種情況下,絕對值最大的應力都是拉應力。以下 對這兩種情況進行分析。1)當 0 且 t =0 時,安全量理論可以寫出如下應力與應變的關系式:(1-1) /( - m)= /( - m)= t/( t - m)=k式中 , , t分別是軸對稱沖壓成形時的徑向主應變、切向主應變 和厚度方向上的主應變; , , t分別是軸對稱沖壓成形時的徑向主應力、切向主應力和厚度 方向上的主應力; m平均應力, m=( + + t)/3;k常數(shù)。在平面應力狀態(tài),式(11)具有如下形式:3 /(2 - )=3 /(2 - t)=3 t/-( t+ )=k (12) 因為 0,所以必定有 2 - 0 與 0。這個結果表明:在兩向拉應力的平面應力狀態(tài)時,如果絕對值最大拉應力是 ,則在這個方向上的主 應變一定是正應變,即是伸長變形。又因為 0,所以必定有-( t+ )0 與 t2 時, 0;當 0。 的變化范圍是 = =0 。在雙向等拉力狀態(tài)時, = ,有 式(12)得 = 0 及 t 0 且 t=0 時,有式(12)可知:因為 0,所以 1)定有 2 0 與 0。這個結果表明:對于兩向拉應力的平面應力狀態(tài),當 的絕對值最大時,則在這個方向上的應變一定時正的,即一定是 伸長變形。又因為 0,所以必定有-( t+ )0 與 t , 0;當 0。 的變化范圍是 = =0 。當 = 時, = 0,也就是 在雙向等拉力狀態(tài)下,在兩個拉應力方向上產生數(shù)值相同的伸長變形;在受單 向拉應力狀態(tài)時,當 =0 時, =- /2,也就是說,在受單向拉應力狀態(tài) 下其變形性質與一般的簡單拉伸是完全一樣的。這種變形與受力情況,處于沖壓應變圖中的 AOC 范圍內(見圖 11);而 在沖壓應力圖中則處于 AOH 范圍內(見圖 12)。上述兩種沖壓情況,僅在最大應力的方向上不同,而兩個應力的性質以及 它們引起的變形都是一樣的。因此,對于各向同性的均質材料,這兩種變形是 完全相同的。(1)沖壓毛坯變形區(qū)受兩向壓應力的作用,這種變形也分兩種情況分析,即o t=0 和 0, t=0。1)當 0 且 t=0 時,有式(12)可知:因為 0,一定有2 - 0 與 0。這個結果表明:在兩向壓應力的平面應力狀態(tài)時,如果11絕對值最大拉應力是 0,則在這個方向上的主應變一定是負應變,即是壓 縮變形。又因為 0 與 t0,即在板料厚度方 向上的應變是正的,板料增厚。在 方向上的變形取決于 與 的數(shù)值:當 =2 時, =0;當 2 時, 0;當 0。這時 的變化范圍是 與 0 之間 。當 = 時,是雙向等壓力狀態(tài) 時,故有 = 0;當 =0 時,是受單向壓應力狀態(tài),所以 =- /2。 這種變形情況處于沖壓應變圖中的 EOG 范圍內(見圖 11);而在沖壓應力圖 中則處于 COD 范圍內(見圖 12)。2) 當 0 且 t=0 時,有式(12)可知:因為 0,所以 一定有 2 0 與 0。這個結果表明:對于兩向壓應力的平面應力狀 態(tài),如果絕對值最大是 ,則在這個方向上的應變一定時負的,即一定是壓 縮變形。又因為 0 與 t0,即在板料厚度方 向上的應變是正的,即為壓縮變形,板厚增大。在 方向上的變形取決于 與 的數(shù)值:當 =2 時, =0;當 2 , 0;當 0。這時, 的數(shù)值只能在 = =0 之間變化。當 = 時,是雙向 等壓力狀態(tài),所以 = 0。這種變形與受力情況,處于沖壓應變圖中的 GOL 范圍內(見圖 11);而在沖壓應力圖中則處于 DOE 范圍內(見圖 12)。(1)沖壓毛坯變形區(qū)受兩個異號應力的作用,而且拉應力的絕對值大于壓應 力的絕對值。這種變形共有兩種情況,分別作如下分析。1)當 0, | |時,由式(12)可知:因為 0, | |,所以一定有 2 - 0 及 0。這個結果表明:在異號的 平面應力狀態(tài)時,如果絕對值最大應力是拉應力,則在這個絕對值最大的拉應 力方向上應變一定是正應變,即是伸長變形。又因為 0, | |,所以必定有 0 0, 0, | |時,由式(12)可知:用與前 項相同的方法分析可得 0。即在異號應力作用的平面應力狀態(tài)下,如果絕 對值最大應力是拉應力 ,則在這個方向上的應變是正的,是伸長變形;而在 壓應力 方向上的應變是負的( 0, 0, 0, | |時,由式(12)可知:因為 0, | |,所以一定有 2 - 0 及 0, 0,必定有 2 - 0,即在拉應力方向上 的應變是正的,是伸長變形。這時 的變化范圍只能在 =- 與 =0 的范圍內 。當 =- 時, 0 0, 0, | |時,由式(12)可知:用與前 項相同的方法分析可得 0, 0, 0, 0o AONGOH+伸長類o AOCAOH+伸長類雙向受壓o 0, 0o EOGCOD壓縮類o 0, | |MONFOG+伸長類| | |LOMEOF壓縮類異號應力o 0, | |CODAOB+伸長類| | | |DOEBOC壓縮類表 12伸長類成形與壓縮類成形的對比項目伸長類成形壓縮類成形變形區(qū)質量問題的表現(xiàn)形式變形程度過大引起變形區(qū)產生破裂現(xiàn)象壓力作用下失穩(wěn)起皺成形極限1主要取決于板材的塑性,與厚度無關2可用伸長率及成形極限 DLF 判斷1主要取決于傳力區(qū)的承載能力2取決于抗失穩(wěn)能力3與板厚有關變形區(qū)板厚的變化減薄增厚提高成形極限的方法1改善板材塑性2使變形均勻化,降低局部變形程度3工序間熱處理1采用多道工序成形2改變傳力區(qū)與變形區(qū)的力學關系3采用防起皺措施+ + - +擴口- - 圖 13 沖壓應變圖圖 13體系化研究方法舉例Categories of stamping formingMany deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming.Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning.In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically.The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state andthe deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane princ ipal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics.(1) When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows.2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are:/(-m)=/(-m)=t/(t -m)=k1.1where, ,t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; ,and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=(+t)/3; k is a constant.In plane stress state, Equation 1.13/(2-)=3/(2-t)=3t/-(t+)=k1.2Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs10to tensile forming.In addition, because 0,therefore -(t+)0 and t2,0;and when 0.The range of is =0 . In the equibiaxial tensile stress state = , according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming.Also because0,therefore -(t+)0 and t,0;and when 0.14The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile.This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2).Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material.(1) When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0,t=0 and 0,t=0.1)When 0 and t=0, according to Equation 1.2, 2-0 與 =0.Thisresult shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is 0, the strain in this direction must be negative, that is, in the state of compressive forming.Also because 0 and t0.The strain in the thicknessdirection of the blankt is positive, and the thickness increases.The deformation condition in the tangential direction depends on the valuesof and .When =2,=0;when 2,0;and when 0.The range of is 0.When =,it is in equibiaxial tensile stress state, hence=0; when =0,it is in uniaxial tensile stress state, hence =-/2.This kind of deformation condition is in the region EOG of the diagram of the stamping strain (see Fig.1.1), and in the region COD of the diagram of the stamping stress (see Fig.1.2).2)When 0and t=0, according to Equation 1.2,2- 0 and 0. Thisresult shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is , the strain in this direction must be negative, that is, in the state of compressive forming.Also because 0 and t0.The strain in thethickness direction of the blankt is positive, and the thickness increases.The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0; and when 0.The range of is = =0 . When = , it is in equibiaxial tensile stress state, hence =0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2).(3) The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow:1) When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming.Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, bymeans of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative (=-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0 and 0, therefore 2- 0. The strain in the tensile stress direction is positive, or in the state of tensile forming.The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, 0, and =-/2. Such deformation is in the region DOF of the15diagram of the stamping strain (see Fig.1.1), and in the region BOC of the diagram of the stamping stress (see Fig.1.2).The four deformation conditions are related to the corresponding stamping forming methods. Their relationships are labeled with letters in Fig.1.1 and Fig.1.2.The four deformation conditions analyzed above are applicable to all kinds of plane stress states, that is, the four deformation conditions can sum up all kinds of stamping forming in to two types, tensile and compressive. When the stress with the maximum absolute value in the deformation zone of the stamping blank is tensile, the deformation along this stress direction must be tensile. Such stamping deformation is called tensile forming. Based on above analysis, the tensile forming occupies five regions MON, AON, AOB, BOC and COD in the diagram of the stamping stain; and four regions FOG, GOH, AOH and AOB in the diagram of the stamping stress.When the stress with the maximum absolute value in the deformation zone of the stamping blank is compressive, the deformation along this stress direction must be compressive. Such stamping deformation is called compressive forming. Based on above analysis, the compressive forming occupies five regions LOM, HOL, GOH, FOG and DOF in the diagram of the stamping strain; and four regions EOF, DOE, COD and BOC in the diagram of the stamping stress.MD and FB are the boundaries of the two types of forming in the diagrams of the stamping strain and stress respectively. The tensile forming is located in the top right of the boundary, and the comp
收藏