《高考數(shù)學文科總復習【第二章】函數(shù)、導數(shù)及其應(yīng)用 第十三節(jié)》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學文科總復習【第二章】函數(shù)、導數(shù)及其應(yīng)用 第十三節(jié)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 精品資料
1.了解函數(shù)單調(diào)性和導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.
2.了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次;會求閉區(qū)間上函數(shù)的最大值、最小值,對多項式函數(shù)一般不超過三次.
知識梳理
一、函數(shù)的導數(shù)與函數(shù)的單調(diào)性的關(guān)系
1.函數(shù)單調(diào)性的充分條件.
設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)y′>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為________;如果在這個區(qū)間內(nèi)y
2、′<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為________.
2.函數(shù)單調(diào)性的必要條件.
設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果函數(shù)y=f(x)在這個區(qū)間內(nèi)為增函數(shù),那么在這個區(qū)間內(nèi)________;如果函數(shù)y=f(x)在這個區(qū)間內(nèi)為________,那么在這個區(qū)間內(nèi)________.
3.求可導函數(shù)的單調(diào)區(qū)間的一般步驟和方法.
(1)確定函數(shù)f(x)的定義域.
(2)計算導數(shù)________,令________,解此方程,求出它們在定義域區(qū)間內(nèi)的一切實根.
(3)把函數(shù)f(x)的間斷點[即f(x)的無定義的點]的橫坐標和上面的各實根按由小到大的順序排列起來,然后用這些點把f(
3、x)的定義域分成若干個小區(qū)間.
(4)確定f′(x)在各個開區(qū)間內(nèi)的符號,根據(jù)f′(x)的符號判定函數(shù)f(x)在每個相應(yīng)小區(qū)間的增減性[若f′(x)>0,則f(x)在相應(yīng)區(qū)間內(nèi)為增函數(shù);若f′(x)<0,則f(x)在相應(yīng)區(qū)間內(nèi)為減函數(shù)].
二、函數(shù)的極值
1.函數(shù)極值的定義.
一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)<f(x0),就說f(x0)是____________,記作____________,x0是________.
如果對x0附近的所有的點,都有f(x)>f(x0).就說f(x0)是______________,記作_________
4、_____,x0是極小值點.極大值與極小值統(tǒng)稱為________.
2.判別f(x0)是極大值、極小值的方法.
若x0滿足f′(x0)=0,且在x0的兩側(cè)f(x)的導數(shù)異號,則x0是f(x)的極值點,f(x0)是極值,并且如果f′(x)在x0兩側(cè)滿足“左正右負”,那么x0是f(x)的________,f(x0)是________;如果f′(x)在x0兩側(cè)滿足“________”,那么x0是f(x)的極小值點,f(x0)是極小值.
3.求可導函數(shù)f(x)的極值的步驟.
(1)確定函數(shù)的定義區(qū)間,求導數(shù)________.
(2)求方程________的根.
(3)用函數(shù)的導數(shù)為0
5、的點和函數(shù)定義域的邊界點,順次將函數(shù)的定義域分成________,并列成表格.檢查f′(x)在________________,如果________,那么f(x)在這個根處取得極大值;如果________,那么f(x)在這個根處取得極小值;如果左右______,那么f(x)在這個根處______.
三、函數(shù)的最大值與最小值
1.函數(shù)的最大值與最小值.
在閉區(qū)間上圖象連續(xù)不斷的函數(shù)f(x)在上________最大值與最小值.
2.利用導數(shù)求函數(shù)的最值的步驟.
設(shè)函數(shù)f(x)在(a,b)內(nèi)可導,在閉區(qū)間上圖象連續(xù)不斷,求函數(shù)f(x)在上的最大值與最小值的步驟如下:
(1)求f(x)在
6、(a,b)內(nèi)的________;
(2)將f(x)的各________與________比較,得出函數(shù)f(x)在上的最值,其中最大的一個是最大值,最小的一個是最小值.
一、1.增函數(shù) 減函數(shù) 2.y′≥0 減函數(shù) y′≤0
3.(2)f′(x) f′(x)=0
二、1.函數(shù)f(x)的一個極大值 y極大值=f(x0) 極大值點 函數(shù)f(x)的一個極小值 y極小值=f(x0) 極值
2.極大值點 極大值 左負右正
3.(1)f′(x) (2)f′(x)=0 (3)若干小開區(qū)間 方程根左右的值的符號 左正右負 左負右正 不改變符號 無極值
三、1.必有 2.(1)極值 (2)極
7、值 f(a),f(b)
基礎(chǔ)自測
1.函數(shù)y=xsin x+cos x在(π,3π)內(nèi)的單調(diào)增區(qū)間為( )
A. B.
C. D.(π,2π)
解析:∵y=xsin x+cos x,∴y′=xcos x.
當x∈(π,3π)時,要使y′=xcos x>0,只要cos x>0,結(jié)合選項知,只有B滿足.
答案:B
2. (2013·四川南充二模)設(shè)函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( )
解析:因為函數(shù)f(x)在x=-2處取得極小值,所以,當x<
8、-2時,f′(x)<0,所以xf′(x)>0;當-2<x<0,f′(x)>0,所以xf′(x)<0.故選C.
答案:C
3.(2012·哈爾濱三中月考)函數(shù)f(x)=x3-x2+ax-5在區(qū)間[-1,2]上不單調(diào),則實數(shù)a的取值范圍是________.
[來源:]
解析:∵f(x)=x3-x2+ax-5,∴f′(x)=x2-2x+a=(x-1)2+a-1.如果函數(shù)f(x)=x3-x2+ax-5在區(qū)間[-1,2]上單調(diào),那么a-1≥0或解得a≥1或a≤-3.于是滿足條件的a∈(-3,1).
答案:(-3,1)
4.函數(shù)f(x)=x3-3x2+1在x=______處取得極小值.
9、
[來源:]
答案:2
[來源:]
1.(2012·陜西卷)設(shè)函數(shù)f(x)=xex,則( )
A.x=1為f(x)的極大值點
B.x=1為f(x)的極小值點
C.x=-1為f(x)的極大值點
D.x=-1為f(x)的極小值點
解析:f′(x)=(x+1)ex,令f′(x)=0,得x=-1,x<-1時,f′(x)<0,f(x)=xex為減函數(shù);x>-1時,f′(x)>0,f(x)=xex為增函數(shù),所以x=-1為f(x)的極小值點.故選D.
答案:D
2.(2013·北京卷)已知函數(shù)f(x)=x2+xsin x+cos x.
(1)若曲線y=f
10、(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.
解析:(1)由f(x)=x2+xsin x+cos x,
得f′(x)=x(2+cos x),
因為y=f(x)在點(a,f(a))處與直線y=b相切.
所以f′(a)=a(2+cos a)=0且b=f(a),
則a=0,b=f(0)=1.
(2)令f′(x)=0,得x=0.
所以當x>0時,f′(x)>0,f(x)在(0,+∞)遞增.
當x<0時,f′(x)<0,f(x)在(-∞,0)上遞減.
所以f(x)的最小值為f(0)=1.
由于
11、函數(shù)f(x)在區(qū)間(-∞,0)和(0,+∞)上均單調(diào),
所以當b>1時曲線y=f(x)與直線y=b有且僅有兩個不同交點.
所以b的取值范圍是(1,+∞).
1.已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)的奇偶性;
(2)求f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=k恰有三個不同的根,求實數(shù)k的取值范圍.
解析:(1)當x>0時,-x<0,
∵f(x)=xln x,f(-x)=-xln x,
∴f(-x)=-f(x),
當x<0時,-x>0,
∵f(x)=xln(-x),f(-x)=-xln(-x),
∴f(-x)=-f(x),
∴f(x)是奇函數(shù)
12、.
(2)當x>0時,f(x)=xln x,
f′(x)=ln x+x·=ln x+1,
令f′(x)<0,得 00,得 x>,
∴當x∈時,f(x)是增函數(shù),
又 f(x)是奇函數(shù),∴當x∈時,f(x)是減函數(shù),
x∈時,f(x)是增函數(shù),
∴f(x)的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為,.
(3)考查f(x)的圖象變化,由(2)知,
當x∈時,f(x)由0遞減到f=-,
當x∈時,f(x)由f遞增到+∞,
當x∈時,f(x)由-∞遞增到f=,
當x∈時,f(x)由f遞減到0,
∵方程f(x)=k恰有三個不同
13、的根,
∴f(x)的圖象與y=k的圖象應(yīng)有3個不同的交點,
∴-
14、知f(x)=x2-x+1,
關(guān)于x的方程f(x)=kex恰有兩個不同的實根,
即x2-x+1=k·ex有兩個不同的實根,也就是k=e-x(x2-x+1)有兩個不同的實根.
令g(x)=e-x(x2-x+1),
2)e-x=
則g′(x)=(2x-1)e-x-(x2-x+1)e-x=-(x2-3x+
-(x-1)(x-2)e-x
由g′(x)=0,得x1=1,x2=2.
所以當x∈(-∞,1)時,g′(x)<0,g(x)在(-∞,1)上為減函數(shù);
當x∈(1,2)時,g′(x)>0,g(x)在(1,2)上為增函數(shù);
當x∈(2,+∞)時,g′(x)<0,g(x)在(2,+∞)上為減函數(shù);
所以,當x=1時,g(x)取得極小值g(1)=,當x=2時函數(shù)取得極大值g(2)=.
函數(shù)y=k與y=g(x)的圖象的大致形狀如上,
由圖象可知,當k=和k=時,關(guān)于x的方程f(x)=kex恰有兩個不同的實根.