山東省濟(jì)南市槐蔭區(qū)九年級(jí)數(shù)學(xué)下冊(cè) 第3章 圓 3.3 垂徑定理同步練習(xí) (新版)北師大版.doc
《山東省濟(jì)南市槐蔭區(qū)九年級(jí)數(shù)學(xué)下冊(cè) 第3章 圓 3.3 垂徑定理同步練習(xí) (新版)北師大版.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《山東省濟(jì)南市槐蔭區(qū)九年級(jí)數(shù)學(xué)下冊(cè) 第3章 圓 3.3 垂徑定理同步練習(xí) (新版)北師大版.doc(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.3垂徑定理 一、夯實(shí)基礎(chǔ) 1.下列語(yǔ)句中,不正確的個(gè)數(shù)是 ( ) ①弦是直徑 ②半圓是弧?、坶L(zhǎng)度相等的弧是等弧 ④經(jīng)過(guò)圓內(nèi)一點(diǎn)可以作無(wú)數(shù)條直徑 A.1 B.2 C.3 D.4 2.△ABC為⊙O的內(nèi)接三角形,若∠AOC=160,則∠ABC的度數(shù)是 ( ) A.80 B.160 C.100 D.80或100 3. 如圖,△ABC內(nèi)接于⊙O,OD⊥BC于D,∠A=50,則∠OCD的度數(shù)是( ) A.40 B.45 C.50 D.60 4.如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=55,則∠BCD的度數(shù)為( ) A.35 B.45 C.55 D.75 5.如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為 ( ) A.3 B.4 C.3 D.4 6.如圖,已知⊙O的直徑CD垂直于弦AB,∠ACD=22.5,若CD=6cm,則AB的長(zhǎng)為( ?。? A. 4cm B. 3cm C. 2cm D. 2cm 二、能力提升 7.(xx貴州安順4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,若AB=8,CD=6,則BE= . 8.如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器0刻度線(xiàn)的端點(diǎn)N與點(diǎn)A重合,射線(xiàn)CP從CA處出發(fā)沿順時(shí)針?lè)较蛞悦棵?度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點(diǎn)E,第35秒時(shí),點(diǎn)E在量角器上對(duì)應(yīng)的讀數(shù)是________度. 9.直角三角形的兩邊長(zhǎng)分別為16和12,則此三角形的外接圓半徑是________. 10.當(dāng)寬為3 cm的刻度尺的一邊與圓相切時(shí),另一邊與圓的兩個(gè)交點(diǎn)處的讀數(shù)如圖所示(單位:cm),那么該圓的半徑為_(kāi)_______cm. 11.(xx?湖南張家界,第16題,3分)如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),則PA+PC的最小值為 ?。? 12. 如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點(diǎn)E,交BC于點(diǎn)D,連接BE、AD交于點(diǎn)P.求證: (1)D是BC的中點(diǎn); (2)△BEC∽△ADC. 13. 如圖,AB是⊙O的直徑,C是的中點(diǎn),CE⊥AB于點(diǎn)E,BD交CE于點(diǎn)F. 求證:CF=BF. 三、課外拓展 14.如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D是⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD. (1)求證:BD平分∠ABC; (2)當(dāng)∠ODB=30時(shí),求證:BC=OD. 15. 如圖所示為圓柱形大型儲(chǔ)油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點(diǎn)A與B相距8 m,罐底最低點(diǎn)到地面CD距離為1 m.設(shè)油罐橫截面圓心為O,半徑為5 m,∠D=56,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin 53≈0.8,tan 56≈1.5,π≈3,結(jié)果保留整數(shù)) 四、中考鏈接 1.(xx湖北黃石3分)如圖所示,⊙O的半徑為13,弦AB的長(zhǎng)度是24,ON⊥AB,垂足為N,則ON=( ) A.5 B.7 C.9 D.11 2. (xx陜西3分)如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( ?。? A.3 B.4 C.5 D.6 答案 1、解析:直徑是弦,但弦不一定是直徑故①不正確,弧包括半圓,優(yōu)弧和劣弧故②正確,等弧是能夠重合的弧故③不正確,而經(jīng)過(guò)圓內(nèi)一點(diǎn)只能作一條直徑或無(wú)數(shù)條直徑(圓內(nèi)一點(diǎn)正好是圓心,故④不正確。) 答案 C 2.解析 如圖,∵∠AOC=160, ∴∠ABC=∠AOC=160=80, ∵∠ABC+∠AB′C=180, ∴∠AB′C=180-∠ABC=180-80=100. ∴∠ABC的度數(shù)是:80或100. 答案 D 3.解析 連接OB, ∵∠A=50, ∴∠BOC=2∠A=100, ∵OB=OC, ∴∠OCD=∠OBC=(180-∠BOC)=40. 答案 A 4.解析 連接AD, ∵AB是⊙O的直徑, ∴∠ADB=90, ∵∠ABD=55, ∴∠A=90-∠ABD=35, ∴∠BCD=∠A=35. 答案 A 5.解析 作OM⊥AB于M,ON⊥CD于N,連接OB,OD, 由垂徑定理、勾股定理得:OM==3, ∵弦AB、CD互相垂直, ∴∠DPB=90, ∵OM⊥AB于M,ON⊥CD于N, ∴∠OMP=∠ONP=90 ∴四邊形MONP是正方形,∴OP=3. 答案 C 6.解:連結(jié)OA,如圖, ∵∠ACD=22.5, ∴∠AOD=2∠ACD=45, ∵⊙O的直徑CD垂直于弦AB, ∴AE=BE,△OAE為等腰直角三角形, ∴AE=OA, ∵CD=6, ∴OA=3, ∴AE=, ∴AB=2AE=3(cm). 故選B. 7.解:如圖,連接OC. ∵弦CD⊥AB于點(diǎn)E,CD=6, ∴CE=ED=CD=3. ∵在Rt△OEC中,∠OEC=90,CE=3,OC=4, ∴OE= ∴BE=OB﹣OE=4﹣. 故答案為4﹣. 8. 解析:連接OE, ∵∠ACB=90, ∴點(diǎn)C在以AB為直徑的圓上, 即點(diǎn)C在⊙O上, ∴∠EOA=2∠ECA, ∵∠ECA=235=70, ∴∠AOE=2∠ECA=270=140. 答案 140 9.解析 由勾股定理可知: ①當(dāng)直角三角形的斜邊長(zhǎng)為16時(shí),這個(gè)三角形的外接圓半徑為8; ②當(dāng)兩條直角邊長(zhǎng)分別為16和12,則直角三角形的斜邊長(zhǎng)==20, 因此這個(gè)三角形的外接圓半徑為10. 綜上所述:這個(gè)三角形的外接圓半徑等于8或10. 答案 8或10 10. 解析 連接OA,過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D, ∵OD⊥AB, ∴AD=AB= (9-1)=4,設(shè)OA=r,則OD=r-3, 在Rt△OAD中, OA2-OD2=AD2,即r2-(r-3)2=42, 解得r= cm. 答案 11.解:連接OA,OB,OC,作CH垂直于AB于H. 根據(jù)垂徑定理,得到BE=AB=4,CF=CD=3, ∴OE===3, OF===4, ∴CH=OE+OF=3+4=7, BH=BE+EH=BE+CF=4+3=7, 在直角△BCH中根據(jù)勾股定理得到BC=7, 則PA+PC的最小值為. 12. 證明 (1)∵AB是⊙O的直徑, ∴∠ADB=90,即AD⊥BC, ∵AB=AC,∴D是BC的中點(diǎn); (2)∵AB是⊙O的直徑,∴∠AEB=∠ADB=90, 即∠CEB=∠CDA=90, ∵∠C是公共角,∴△BEC∽△ADC. 13. 證明 如圖.∵AB是⊙O的直徑, ∴∠ACB=90,又∵CE⊥AB, ∴∠CEB=90. ∴∠2=90-∠ACE=∠A. 又∵C是弧BD的中點(diǎn),∴∠1=∠A. ∴∠1=∠2,∴ CF=BF. 14.證明 (1)∵OD⊥AC OD為半徑, ∴=,∴∠CBD=∠ABD, ∴BD平分∠ABC; (2)∵OB=OD,∴∠OBD=∠ODB=30, ∴∠AOD=∠OBD+∠ODB=30+30=60, 又∵OD⊥AC于E,∴∠OEA=90, ∴∠A=180-∠OEA-∠AOD=180-90-60=30, 又∵AB為⊙O的直徑,∴∠ACB=90, 在Rt△ACB中,BC=AB, ∵OD=AB,∴BC=OD. 15. 解 如圖,連接AO、BO.過(guò)點(diǎn)A作AE⊥DC于點(diǎn)E,過(guò)點(diǎn)O作ON⊥DC于點(diǎn)N,ON交⊙O于點(diǎn)M,交AB于點(diǎn)F,則OF⊥AB. ∵OA=OB=5 m,AB=8 m, ∴AF=BF=AB=4(m),∠AOB=2∠AOF,在Rt△AOF中,sin∠AOF==0.8=sin 53, ∴∠AOF=53,則∠AOB=106, ∵OF==3(m),由題意得:MN=1 m, ∴FN=OM-OF+MN=3(m), ∵四邊形ABCD是等腰梯形,AE⊥DC,F(xiàn)N⊥AB, ∴AE=FN=3 m,DC=AB+2DE. 在Rt△ADE中,tan 56==, ∴DE=2 m,DC=12 m. ∴S陰=S梯形ABCD-(S扇形OAB-S△OAB)=(8+12)3- ≈20(m2). 答 U型槽的橫截面積約為20 m2. 中考鏈接: 1.解:由題意可得, OA=13,∠ONA=90,AB=24, ∴AN=12, ∴ON=, 故選A. 2.解:過(guò)點(diǎn)O作OD⊥BC于D, 則BC=2BD, ∵△ABC內(nèi)接于⊙O,∠BAC與∠BOC互補(bǔ), ∴∠BOC=2∠A,∠BOC+∠A=180, ∴∠BOC=120, ∵OB=OC, ∴∠OBC=∠OCB==30, ∵⊙O的半徑為4, ∴BD=OB?cos∠OBC=4=2, ∴BC=4. 故選:B.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 山東省濟(jì)南市槐蔭區(qū)九年級(jí)數(shù)學(xué)下冊(cè) 第3章 3.3 垂徑定理同步練習(xí) 新版北師大版 山東省 濟(jì)南市 槐蔭區(qū) 九年級(jí) 數(shù)學(xué) 下冊(cè) 定理 同步 練習(xí) 新版 北師大
鏈接地址:http://m.appdesigncorp.com/p-5523335.html