新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析

上傳人:仙*** 文檔編號:43227520 上傳時(shí)間:2021-11-30 格式:DOC 頁數(shù):5 大?。?84KB
收藏 版權(quán)申訴 舉報(bào) 下載
新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析_第1頁
第1頁 / 共5頁
新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析_第2頁
第2頁 / 共5頁
新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高考數(shù)學(xué) 總復(fù)習(xí):考點(diǎn)21直線與圓含解析(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 考點(diǎn)21 直線與圓 1.(20xx安徽高考文科T4)過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) (A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0 【命題立意】本題主要考查直線平行問題. 【思路點(diǎn)撥】可設(shè)所求直線方程為,代入點(diǎn)(1,0)得值,進(jìn)而得直線方程. 【規(guī)范解答】選A,設(shè)直線方程為,又經(jīng)過,故,所求方程為. 2.(20xx廣東高考文科T6)若圓心在x軸上、半徑為的圓O位于y軸左側(cè),且與直線x+2y=0相切,則圓O的方程是( ) (A)

2、(B) (C) (D) 【命題立意】本題考察直線與圓的位置關(guān)系. 【思路點(diǎn)撥】由切線的性質(zhì):圓心到切線的距離等于半徑求解. 【規(guī)范解答】選.設(shè)圓心為,則,解得, 所以所求圓的方程為:,故選. 3.(20xx 海南寧夏高考理科T15)過點(diǎn)A(4,1)的圓C與直線相切于點(diǎn)B(2,1). 則圓C的方程為 . 【命題立意】本題主要考察了圓的相關(guān)知識,如何靈活轉(zhuǎn)化題目中的條件求解圓的方程是解決問題的關(guān)鍵. 【思路點(diǎn)撥】由題意得出圓心既在線段AB的中垂線上,又在過點(diǎn)B(2,1)且與直線垂直的直線上,進(jìn)而可求出圓心和半徑,從而得解. 【規(guī)范解答

3、】由題意知,圓心既在過點(diǎn)B(2,1)且與直線垂直的直線上,又在線段AB的中垂線上.可求出過點(diǎn)B(2,1)且與直線垂直的直線為,AB的中垂線為,聯(lián)立 半徑,所以,圓的方程為. 【答案】 4.(20xx廣東高考理科T12)已知圓心在x軸上,半徑為的圓O位于y軸左側(cè),且與直線x+y=0相切,則圓O的方程是 【命題立意】本題考察直線與圓的位置關(guān)系. 【思路點(diǎn)撥】由切線的性質(zhì):圓心到切線的距離等于半徑求解. 【規(guī)范解答】設(shè)圓心坐標(biāo)為,則,解得,又圓心位于軸左側(cè),所以.故圓O的方程為. 【答案】 5.(20xx天津高考文科T14)已知圓C的圓心是直線x-y+1=0與

4、x軸的交點(diǎn),且圓C與直線x+y+3=0相切.則圓C的方程為 【命題立意】考查點(diǎn)到直線的距離、圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系. 【思路點(diǎn)撥】圓心到與圓的切線的距離即為圓的半徑. 【規(guī)范解答】由題意可得圓心的坐標(biāo)為(-1,0),圓心到直線x+y+3=0的距離即為圓的半徑,故 ,所以圓的方程為. 【答案】 6.(20xx江蘇高考T9)在平面直角坐標(biāo)系xOy中,已知圓上有且僅有四個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是___________ 【命題立意】本題考查直線與圓的位置關(guān)系. 【思路點(diǎn)撥】由題意分析,可把問題轉(zhuǎn)化

5、為坐標(biāo)原點(diǎn)到直線12x-5y+c=0的距離小于1,從而求出c的取值范圍. 【規(guī)范解答】如圖,圓的半徑為2, 圓上有且僅有四個(gè)點(diǎn)到直線12x-5y+c=0的距離為1, 問題轉(zhuǎn)化為坐標(biāo)原點(diǎn)(0,0)到直線12x-5y+c=0的 距離小于1. 【答案】 7.(20xx山東高考理科T16)已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線:被圓C所截得的弦長為,則過圓心且與直線垂直的直線的方程為 . 【命題立意】本題考查了直線的方程、點(diǎn)到直線的距離、直線與圓的關(guān)系,考查了考生的分析問題解決問題的能力、推理論證能力和運(yùn)算求解能力. 【規(guī)范解答】由題

6、意,設(shè)所求的直線方程為,設(shè)圓心坐標(biāo)為,則由題意知:,解得或-1,又因?yàn)閳A心在x軸的正半軸上,所以,故圓心坐標(biāo)為(3,0),因?yàn)閳A心(3,0)在所求的直線上,所以有,即,故所求的直線方程為. 【答案】 【方法技巧】(1)研究直線與圓的位置關(guān)系,盡可能簡化運(yùn)算,要聯(lián)系圓的幾何特性.如“垂直于弦的直徑必平分弦”,“圓的切線垂直于過切點(diǎn)的半徑”,“兩圓相交時(shí)連心線必垂直平分其公共弦”等.在解題時(shí)應(yīng)注意靈活運(yùn)用. (2)直線與圓相交是解析幾何中一類重要問題,解題時(shí)注意運(yùn)用“設(shè)而不求”的技巧. 8.(20xx山東高考文科T16)已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:被該圓所截得

7、的弦長為,則圓C的標(biāo)準(zhǔn)方程為 . 【命題立意】本題考查了點(diǎn)到直線的距離、直線與圓的關(guān)系,圓的標(biāo)準(zhǔn)方程等知識,考查了考生的分析問題解決問題的能力、推理論證能力和運(yùn)算求解能力. 【思路點(diǎn)撥】根據(jù)弦長及圓心在x軸的正半軸上求出圓心坐標(biāo),再求出圓的半徑即可得解. 【規(guī)范解答】設(shè)圓心坐標(biāo)為,圓的半徑為,則由題意知:,解得或-1,又因?yàn)閳A心在x軸的正半軸上,所以,故圓心坐標(biāo)為(3,0),故所求圓的方程為. 【答案】 【方法技巧】(1)研究直線與圓的位置關(guān)系,盡可能簡化運(yùn)算,要聯(lián)系圓的幾何特性.如“垂直于弦的直徑必平分弦”,“圓的切線垂

8、直于過切點(diǎn)的半徑”,“兩圓相交時(shí)連心線必垂直平分其公共弦”等.在解題時(shí)應(yīng)注意靈活運(yùn)用. (2)直線與圓相交是解析幾何中一類重要問題,解題時(shí)注意運(yùn)用“設(shè)而不求”的技巧. 9.(20xx湖南高考文科T14)若不同兩點(diǎn)P,Q的坐標(biāo)分別為(a,b),(3-b,3-a),則線段PQ的垂直平分線l的斜率為 ,圓(x-2)2+(y-3)2=1關(guān)于直線對稱的圓的方程為 . 【思路點(diǎn)撥】第一問直接利用“如果兩直線的斜率存在,那么相互垂直的充要條件是斜率之積等于-1”;第二問把圓的對稱轉(zhuǎn)化為圓心關(guān)于直線的對稱. 【規(guī)范解答】設(shè)PQ的垂直平分線的斜率為k,

9、則k=-1,∴k=-1,而且PQ的中點(diǎn)坐標(biāo)是( ,),∴l(xiāng)的方程為:y-=-1(x- ),∴y=-x+3,而圓心(2,3)關(guān)于直線y=-x+3對稱的點(diǎn)坐標(biāo)為(0,1),∴所求圓的方程為:x2+(y-1)2=1. 【答案】-1 x2+(y-1)2=1 【方法技巧】一個(gè)圖形關(guān)于一條直線的對稱圖形的方程的求法,如果對稱軸的斜率為1,常常把橫坐標(biāo)代入得到縱坐標(biāo),把縱坐標(biāo)代入得到橫坐標(biāo),如(a,b)關(guān)于y=x+c的對稱點(diǎn)是(b-c,a+c). 10.(20xx北京高考理科T19)在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于. (1

10、)求動(dòng)點(diǎn)P的軌跡方程. (2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由. 【命題立意】本題考查了動(dòng)點(diǎn)軌跡的求法,第(2)問是探究性問題,考查了考生綜合運(yùn)用知識解決問題的能力,考查了數(shù)學(xué)中的轉(zhuǎn)化與化歸思想. 【思路點(diǎn)撥】(1)設(shè)出點(diǎn)P的坐標(biāo),利用AP與BP的斜率之積為,可得到點(diǎn)P的軌跡方程.(2)方法一:設(shè)出,把和的面積表示出來,整理求解;方法二:把△PAB與△PMN的面積相等轉(zhuǎn)化為,進(jìn)而轉(zhuǎn)化為. 【規(guī)范解答】(1)因?yàn)辄c(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對稱,所以點(diǎn)的坐標(biāo)為. 設(shè)點(diǎn)的坐標(biāo)為, 由題意得, 化簡得 . 故動(dòng)點(diǎn)的軌跡方程為. (2)方法一:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn),得坐標(biāo)分別為,. 則直線的方程為,直線的方程為, 令得,, 于是的面積為 , 又直線的方程為,, 點(diǎn)到直線的距離, 于是的面積為 , 當(dāng)時(shí),有, 又, 所以=,解得. 因?yàn)?,所以? 故存在點(diǎn)使得與的面積相等,此時(shí)點(diǎn)的坐標(biāo)為 方法二:若存在點(diǎn)使得與的面積相等,設(shè)點(diǎn)的坐標(biāo)為 則, 因?yàn)? 所以, 所以, 即 ,解得, 因?yàn)?,所以? 故存在點(diǎn)使得△與△的面積相等,此時(shí)點(diǎn)的坐標(biāo)為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!