3噸柴油動力貨車,柴油,動力,貨車
車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書 I 3 噸柴油動力貨車設(shè)計(jì) 后驅(qū)動橋與后懸架設(shè)計(jì) 摘要 驅(qū)動橋是將傳動軸傳來的扭矩進(jìn)行減速增扭 并改變其扭矩的方向 再分配 給左右車輪 并使左右車輪具有差速作用 以保證內(nèi)外車輪以不同的轉(zhuǎn)速轉(zhuǎn)向 懸架是現(xiàn)代汽車上的重要總成之一 它用來感知不同地面給車架的不同程度的 方向上的力 并利用機(jī)構(gòu)中的彈簧來減小路面的崎嶇不平對乘客乘坐舒適感的影 響 這次設(shè)計(jì)從驅(qū)動橋開始 首先是對驅(qū)動橋的總體認(rèn)識 根據(jù)設(shè)計(jì)要求對驅(qū)動 橋的形式進(jìn)行選擇 然后是對主減速器的設(shè)計(jì)計(jì)算 包括對主減速器的概述 形 式的選擇 主減速器齒輪參數(shù)的設(shè)計(jì)計(jì)算 主減速比及載荷的確定 差速器的選 擇 半軸和行星齒輪的參數(shù)計(jì)算 半軸的計(jì)算 選擇以及對上述各個(gè)部分的強(qiáng)度 校核計(jì)算 對懸架的設(shè)計(jì)參考了多種車型 選擇鋼板彈簧非獨(dú)立懸架 內(nèi)容包括 懸架形式的選擇 鋼板和減震器的計(jì)算等 懸架的作用是傳遞車架 承載式車身 和車橋之間一切力和力矩 這次設(shè)計(jì) 采用非獨(dú)立懸架 設(shè)計(jì)的重點(diǎn)是對主減速器的齒輪進(jìn)行設(shè)計(jì)和計(jì)算 懸架方面 鋼板彈簧的選 擇和剛度校核是關(guān)鍵 對于各個(gè)軸和齒輪的接觸和彎曲強(qiáng)度校核都符合要求 關(guān)鍵詞 驅(qū)動橋 主減速器 半軸 鋼板彈簧 車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書 II 3T DIESEL FUEL POWER TRUCK DESIGN REAR DRIVING AXLE AND REAR SUSPENSIONASSEMBLY ABSTRACT Driving axle works that transmission shaft brought over torque proceed deceleration speed increased combine transfer his tensional heading reassign given about left and right wheel combine gotten about possess differential acting withal guarantee wheel inside and outside and withal different rotation rate turn The suspension system is the important part of the morden automotive the suspension system feel much power of the frame from the road surface sping in the system absorb the shocks of all kinds of the road surface so that passengers have a comfortable ride The design starts from the live axle first I know about type It joins up handgrip carriage and axletree elastically primary mission yes transfer action at wheel and carriage of compartment wholeness force and moment relax pavement hand down to carriage shock load attenuation resulting bearing systemic vibrate guaranee garage gotten smoothness guarantee wheel at pavement dissatisfaction and load fluctuation hour in the right would motility The function of the suspension transfers all of force and moment between the frame bearing the weight of the body and the axletree This design adhibits the disindependencing suspension The key of the design designs and calculate to gear wheel of the main reducing gear The crux is the way of rear suspension siderography selecting and rigidity osculation intension Structure simplicity usability best adjust service easiness KEY WORDS driving axle main reducing gear semi axis plate spring 車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書 III 符號說明 rr 車輪的滾動半徑 np 最大功率時(shí)發(fā)動機(jī)的轉(zhuǎn)速 vamax 最高車速 igH 變速器最高檔傳動比 Temax 發(fā)動機(jī)最大轉(zhuǎn)矩 N 驅(qū)動橋數(shù)目 iTL 由發(fā)動機(jī)至所計(jì)算的主減速器從動齒輪之間的傳系最檔傳動比 T 上述傳動部分傳動效率 K0 離合器產(chǎn)生沖擊載荷時(shí)超載系數(shù) G2 滿載時(shí)一個(gè)驅(qū)動輪上的靜載荷系數(shù) 輪胎與路面間的附著系數(shù) rr 車輪的滾動半徑 lB 所計(jì)算的主減速器從動齒輪到驅(qū)動車輪之間的傳動效率 ilB 所計(jì)算的主減速器從動齒輪到驅(qū)動車輪之間的傳動比 p 單位齒長上的圓周力 N mm ig 變速器 檔傳動比 d1 主動齒輪節(jié)圓直徑 F 動齒輪的齒面寬 半軸的扭轉(zhuǎn)應(yīng)力 T 半軸的計(jì)算轉(zhuǎn)矩 d 半軸桿部直徑 K 超載系數(shù) Ks 尺寸系數(shù) 反映材料性質(zhì)的不均勻性 與齒輪尺寸及熱處理等有關(guān) Km 載荷分配系數(shù) Kv 質(zhì) 量 系 數(shù) 對 于 汽 車 驅(qū) 動 橋 齒 輪 當(dāng) 齒 輪 接 觸 良 好 周 節(jié) 及 徑 向 跳 動 精 度 高 時(shí) 車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書 IV 目 錄 第一章 前言 1 第二章 驅(qū)動橋結(jié)構(gòu)方案分析 2 2 1 驅(qū)動橋概述 2 2 2 驅(qū)動橋形式及選擇 3 第三章 主減速器設(shè)計(jì) 4 3 1 主減速器結(jié)構(gòu)方案分析 4 3 2 主減速比及計(jì)算載荷的確定 4 3 2 1 主減速比 的確定 4 0 3 2 2 齒輪計(jì)算載荷的確定 4 3 3 主減速器齒輪主要參數(shù)計(jì)算 5 3 3 1 主 從動齒輪齒數(shù)的選擇 6 3 3 2 從動齒輪節(jié)圓直徑及端面模數(shù)的選擇 6 3 3 3 齒面寬的選擇 7 3 3 4 雙曲面齒輪的偏移距 7 3 3 5 螺旋角的選擇 7 3 3 6 圓弧齒雙曲面齒輪的幾何尺寸設(shè)計(jì) 8 3 4 主減速器齒輪強(qiáng)度計(jì)算 18 3 4 1 單位齒上的圓周力 18 3 4 2 齒輪彎曲強(qiáng)度計(jì)算 19 3 4 3 齒輪接觸強(qiáng)度計(jì)算 20 3 5 主減速器的材料和熱處理 21 3 6 主減速器錐齒輪軸承的載荷計(jì)算 22 3 6 1 主減速器主動錐齒輪上的當(dāng)量轉(zhuǎn)矩 的計(jì)算 221dT 3 6 2 主減速器主動錐齒輪齒面寬中點(diǎn)處圓周力計(jì)算 22 3 6 3 雙曲面齒輪的軸向力與徑向力的計(jì)算 22 3 6 4 懸臂式支承主動錐齒輪的軸承徑向載荷的確定 23 3 6 5 主減速器從動錐齒輪的軸承計(jì)算 25 第四章 差速器設(shè)計(jì) 27 4 1 差速器結(jié)構(gòu)方案分析 27 車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書 V 4 2 差速器齒輪主要參數(shù)計(jì)算 28 4 3 差速器齒輪強(qiáng)度計(jì)算 31 第五章 半軸及橋殼設(shè)計(jì) 33 5 1 半軸的設(shè)計(jì)計(jì)算 33 5 1 1 半軸的形式 33 5 1 2 半軸參數(shù)計(jì)算 33 5 1 3 半軸的強(qiáng)度計(jì)算 30 5 2 半軸的結(jié)構(gòu) 材料與熱處理 35 5 3 橋殼的設(shè)計(jì)計(jì)算 35 5 3 1 橋殼的設(shè)計(jì) 35 5 3 2 橋殼強(qiáng)度計(jì)算 36 第六章 后懸架設(shè)計(jì) 33 6 1 后懸架概述 33 6 2 后懸架的設(shè)計(jì)計(jì)算 35 6 2 1 懸架已知參數(shù) 39 6 2 2 懸架主要參數(shù)的確定 40 6 2 3 彈性元件的設(shè)計(jì)計(jì)算 40 6 2 4 后鋼板彈簧的計(jì)算 43 第七章 結(jié)論 49 參考文獻(xiàn) 50 致謝 51 fuel electronics
As oil gets more expensive, carmakers are looking at engine management systems that can cope with increasing levels of ethanol.
Oil production could peak between 2010 and 2020.When it happens ,oil consumption will become more important than new discoveries ;and crude oil prices will rise and rise .Transport is the dominant sector in terms of oil use and motor vehicles will have to become more fuel-efficient.
Vehicles are the largest source of pollution. Regulations have addressed the problem for transportation and real improvements have been achieved ,particularly in lead and carbon monoxide levels .But some long-term emissions have not been considered .This is particularly eve case for greenhouse gas emissions ;carbon dioxide in particular.
To protect their livelihoods ,carmakers are investigating technologies and alternative fuels that either reduce oil consumption or cut emissions .Ethanol is starting to become more attractive as it can be used flexibly .The driver can run on standard gasoline or on
The engine management system is an essential part of such systems’ success ,says French Tier One supplier Valeo :“They control
Torque, ancillary systems ,diagnose servicing issues and ,most importantly ,emissions.”
Torque control features deliver engine responses with levels of drivability and acceleration in agreement with users’ requests .Engine torque control also co-prorates functions such as traction control, cruise control, transmissions and brakes.
Emissions break down into three main areas: those from the exhaust tailpipe; refueling losses and evaporative emissions .The issue is to comply with emission regulations and minimize fuel consumption .This is achieved through dedicated after-treatment components such as catalytic converters, sensors and electro-mechanical actuators.
The way the engine management system controls torque and emission is complex .The quantities of air and recycled exhaust gases entering the engine are precisely managed with dedicated sensors and actuators .The right air/fuel mix for the catalyst to work properly .The mix has to ignite at the right time .The three-way catalyst then has to keep final pollutant emissions at acceptable levels.
All these functions need to cooperate with other electronic units through data buses and eventually wired connections .Feedback from them allows the system to ignore any irrelevant disturbances and variations.
Fuel efficient driving and reduction of greenhouse gas emissions can be achieved by using engine technologies or different fuels .Which prevails will depend on cost ,market acceptance ,and political and fiscal incentives.
A vehicle fuelled with E85 fuel ,which contains 85 percent ethanol and 15 percent gasoline ,produces just 79percent of the emissions produced by pure gasoline .The interest in ethanol as an alternative fuel comes mainly from its clean burning qualities .Ethanol contains less carbon than gasoline.
Compared with gasoline, most ethanol cars produce lower carbon monoxide and carbon dioxide emissions and the same or lower levels of hydrocarbon and non-methane hydrocarbon hydro carton emissions Oxides of nitrogen emissions are about the same for ethanol and gasoline vehicles.
Ethanol fuel has fewer highly volatile components than gasoline and so has emissions.
Moreover it can be produced from crops and so qualifies renewable fuel .Bio-ethanol produces no fossil carbon dioxide because the plants used to make ethanol take CO2 out of the air in order to grow . There is a net increase of zero.
There is no need, however, to fit a specific ethanol conductivity sensor .The stoichometric air-fuel ratio of ethanol is very different to gasoline .For E100 it is 9:1, for E85 is it 10:1,for gasoline it is 14.7:1.Because of this ,it is possible to recognize the amount of ethanol and gasoline by using the standard oxygen sensor already found in gasoline architectures.
Although the ethanol content of the blend at a refueling pump is specified ,the content of the vehicle tanks may be different because it may mix with any fuel already in the vehicle’ stank .It is the job of the engine management system to make the adjustments the vehicle needs to operate optimally.
The energetic content of ethanol is around 30 percent less than the same volume of gasoline .Fuel consumption is potentially increased in the same proportion .To deal with the decline in fuel efficiency, carmakers install larger fuel tanks, so the vehicle’s range is not compromised .Injectors’ flow ranges have to be increased too.
Ethanol has fewer highly volatile components than gasoline ,so Cole starting problems may occur .To solve this issue two kinds of solutions ate used ;In the US and Sweden ,a fuel with a minimal amount of gasoline is used ,the amount of gasoline can be as high as 30 percent in the winter .In Sweden ,where cold starts at -10℃ are common in the winter ,the vehicle is plugged in to an electric source to keep it warm.
In Brazil, pure hydrated ethanol is used but with a small additional gasoline reserve tank and fuel line that is used only for cold starts .Starters can also be modified to increase the cranking speed.
In Brazilian flex-fuel vehicle architectures, the engine management system must manage inputs from the cold start tank, recognizing when fuel is low .Its outputs must manage gasoline supply for cold start via an electric gasoline pump relay and a cold-start injection solenoid valve.
Optional driver display information includes indicators to show the type of fuel in use and when the cold start tank is low .These features require hardware that is usually available as spares on standard gasoline ECUs .so no specific ECU has to be designed.
In cold weather ,the engine management system orders a wall-wetting ,full-group pre-injection is performed using gasoline ,by simultaneously activating the dedicated electric pump and the solenoid valve .As soon as the engine speed is high enough the injectors inject the ethanol .Gasoline injection is then phased out within a few seconds.
How does it know that the fuel blend is? Not by constantly measuring the mix .A standard upstream oxygen sensor recognizes the amount of ethanol and gasoline. This sensor measures the difference between the air/fuel ratio required for optimal catalyst efficiency and those effectively achieved.
“Slight errors are directly cancelled with the lambda feedback correction performed on injection timing, while large ones are arreibuted to changes in fuel characteristic.” says Valeo .The new air/fuel ratio is then estimated and translated into gasoline ethanol ratio .This translation is gassed on the experimental relationship between air/fuel and gasoline/ethanol ratios.
To improve robustness, estimating the ethanol ratio is triggered as far as possible by information indicating that it is likely that there has been a fuel change. When available, information on the main tank level is used.
The translation of torque requests into engine management requests for the air, fuel and ignition has to take into account differences in physical parameters such as the stoichometric ratio, calorific power and combustion efficiency. For blend fuels, engine management parameters and behaviors are obtained by using the estimated ethanol/gasoline ratio as an interpolating parameter. Says Valeo .The same is used to calculate injection masses and spark advance values.
Air loads differ too .There are significant differences between gasoline and ethanol’s latent heat vaporization. Roughly speaking ,the ethanol cools down the intake air and thus increases its density .The air mass admitted into the cylinders is higher as a result .Because of this ,air load calibrations have to cater for both 100 percent ethanol and 100 percent gasoline.
“We expect ethanol to be blended with gasoline in most European and US fuel in the next few years,” sys Valeo. “Whether E85 will become the rule is more difficult to say, but we are ready for it.”
車輛與動力工程學(xué)院畢業(yè)設(shè)計(jì)說明書
第一章 前 言
隨著中國經(jīng)濟(jì)的發(fā)展,我國的汽車工業(yè)在經(jīng)過多年發(fā)展以后迎來了一個(gè)快速發(fā)展的時(shí)機(jī)。但是,隨著國際石油資源的緊缺和價(jià)格的不斷攀升,以及汽車新消費(fèi)稅政策的持續(xù)影響,低油耗、排量適中、價(jià)格合理、成為消費(fèi)者的首選,經(jīng)濟(jì)型汽車以其良好的燃油經(jīng)濟(jì)性而快速發(fā)展起來。由于柴油較汽油價(jià)格低,且柴油明顯比汽油省油,再加上柴油發(fā)動機(jī)的技術(shù)不斷成熟,逐漸改善工作粗暴,噪聲大等缺點(diǎn),所以很多汽車廠家紛紛推出新版載貨汽車。
驅(qū)動橋處于動力傳動系的末端,其基本功能是增大由傳動軸或變速器傳來的轉(zhuǎn)矩,并將動力合理地分配給左、右驅(qū)動輪,另外還承受作用于路面和車架或車身之間的垂直力力和橫向力。驅(qū)動橋一般由主減速器、差速器、車輪傳動裝置和驅(qū)動橋等組成。做為經(jīng)濟(jì)型轎車上的一個(gè)重要部件,在設(shè)計(jì)時(shí)不僅僅要求安全性能,還要求有很好的經(jīng)濟(jì)性。
因此選用了單級主減速器,并選用下偏置準(zhǔn)雙曲面齒輪嚙合,更好的降低離地間隙。采用對稱式圓錐行星齒輪差速器,在滿足需求的基礎(chǔ)上節(jié)約了制造成本。后橋殼蓋為冷軋鋼板08Al沖壓而成。驅(qū)動橋橋殼有三中結(jié)構(gòu)類型:可分式橋殼、整體式橋殼和組合式橋殼。采用組合式橋殼可以使尺寸更緊湊。所設(shè)計(jì)的主減速比為4.95,可以保證該車具有良好的動力性和燃料經(jīng)濟(jì)性。采用了準(zhǔn)雙曲面齒輪,使得其傳動工作平穩(wěn),噪聲小,并且在各種轉(zhuǎn)速和載荷下具有高的傳動效率。
該車類型采用驅(qū),后驅(qū)動橋采用非斷開式驅(qū)動橋,其主減速器裝在車架上,從而主減速器,差速器全部傳動軸質(zhì)量都轉(zhuǎn)化為懸掛質(zhì)量。左右車輪采用非獨(dú)立懸架,可適當(dāng)減少車身振動,傾斜,提高行使穩(wěn)定性以及乘坐舒適性。
第二章 驅(qū)動橋結(jié)構(gòu)方案分析
§2.1驅(qū)動橋概述
驅(qū)動橋位于傳動系統(tǒng)的末端,在一般的汽車驅(qū)動橋總體構(gòu)造中,驅(qū)動橋主要有主減速器、差速器、半軸和驅(qū)動橋殼等組成。
其基本功用是增大由傳動軸傳來的轉(zhuǎn)矩,改變轉(zhuǎn)矩的傳遞方向,將轉(zhuǎn)矩分配給左、右驅(qū)動車輪,降低轉(zhuǎn)速,通過差速器實(shí)現(xiàn)左、右驅(qū)動車輪具有汽車行駛運(yùn)動學(xué)所要求的差速功能;同時(shí),驅(qū)動橋還要承受作用于路面和車架或車廂之間的垂直力、縱向力和橫向力。
對于各種不同類型的和用途的汽車,正確的確定上述機(jī)件的結(jié)構(gòu)型式并成功地將它們組合成一個(gè)整體-驅(qū)動橋,乃是設(shè)計(jì)者必須首先解決的問題。在汽車總體設(shè)計(jì)時(shí),從整車性能出發(fā)確定了驅(qū)動橋的傳動比,對于用什么型式的驅(qū)動橋,什么結(jié)構(gòu)的主減速器和差速器等在驅(qū)動橋設(shè)計(jì)時(shí)要具體考慮的,絕大多數(shù)的發(fā)動機(jī)在汽車上是縱置的,為使扭矩傳給車輪,驅(qū)動橋必須改變扭矩的方向,同時(shí)根據(jù)車輛的具體要求解決左右車輪的扭矩分配,如果是多橋驅(qū)動的汽車亦同時(shí)要考慮各橋間的扭矩分配問題。整體式驅(qū)動橋一方面需要承擔(dān)汽車的重荷,另一方面車輪上的作用力以及傳遞扭矩所產(chǎn)生的反作用力矩皆由驅(qū)動橋承擔(dān),所以驅(qū)動橋的零件必須具有足夠的剛度和強(qiáng)度,以保證機(jī)件可靠的工作。驅(qū)動橋還必須滿足通過性急平順性的要求。
對驅(qū)動橋的基本要求可以歸納為:
一、所選擇的主減速比應(yīng)能滿足汽車在給定使用條件下具有最佳的動力性和燃油經(jīng)濟(jì)性;
二、差速器在保證左、右驅(qū)動車輪能以汽車運(yùn)動學(xué)所要求的差速滾動外并將轉(zhuǎn)矩平穩(wěn)而連續(xù)不斷的傳遞給左右驅(qū)動車輪;
三、當(dāng)左右驅(qū)動車輪與地面的附著系數(shù)不同時(shí),應(yīng)能充分利用汽車的牽引力;
四、能承受和傳遞路面和車架或車廂間的鉛垂力、縱向力和橫向力,以及驅(qū)動時(shí)的反作用力矩和制動時(shí)的制動力矩;
五、驅(qū)動橋各零部件在保證其剛度、強(qiáng)度、可靠性及壽命的前提下應(yīng)力求減小簧下質(zhì)量,以減小不平路面對驅(qū)動橋的沖擊載荷,從而改善汽車的平順性;
六、輪廓尺寸不大以便于汽車總體布置并與所要求的驅(qū)動橋離地間隙相適應(yīng);
七、齒輪與其它傳動件工作平穩(wěn),無噪聲;
八、驅(qū)動橋總成及零部件設(shè)計(jì)應(yīng)盡量滿足零件的標(biāo)準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的要求;
九、在各種載荷及轉(zhuǎn)速工況有高的傳動效率;
十、結(jié)構(gòu)簡單、維修方便,機(jī)件工藝性好,制造容易。
由于后橋結(jié)構(gòu)基本已經(jīng)固定,在后橋設(shè)計(jì)中需要改進(jìn)的問題主要有:齒輪傳動的噪聲、振動;半軸的可靠性設(shè)計(jì);后橋殼的應(yīng)力分析;雙曲面齒輪的設(shè)計(jì)方法等。
§ 2.2 驅(qū)動橋型式及選擇
驅(qū)動橋的類型有兩大類:斷開式驅(qū)動橋和非斷開式驅(qū)動橋。驅(qū)動橋型式與整車有非常密切的關(guān)系。根據(jù)整車的通過性、平順性以及操縱穩(wěn)定性對懸架結(jié)構(gòu)提出了要求,如懸架選擇了合適的結(jié)構(gòu)型式,而驅(qū)動橋的結(jié)構(gòu)也必須與懸架相適應(yīng)。因此,驅(qū)動橋的選型應(yīng)從汽車的類型、使用條件和生產(chǎn)條件出發(fā),并和其他各部件的結(jié)構(gòu)型式與特性相適應(yīng),以保證汽車達(dá)到預(yù)期性能要求。
由于本設(shè)計(jì)中所設(shè)計(jì)的車型為柴油動力的輕型貨車,由行駛條件及成本出發(fā),采用非獨(dú)立懸架及非斷開式驅(qū)動橋。這種型式驅(qū)動橋在汽車上,尤其是載重汽車上應(yīng)用相當(dāng)廣泛。它主要優(yōu)點(diǎn)是:結(jié)構(gòu)簡單、制造工藝性好、成本低、可靠性高、維修調(diào)整容易等。
本次設(shè)計(jì)的是載重3噸柴油動力貨車的后驅(qū)動橋,由經(jīng)濟(jì)性及低成本等因素考慮:故本次設(shè)計(jì)采用非斷開式驅(qū)動橋,單級主減速器,雙曲面齒輪傳動,普通對稱式圓錐行星齒輪差速器,全浮式半軸,整體式橋殼。
第三章 主減速器設(shè)計(jì)
§ 3.1 主減速器結(jié)構(gòu)方案分析
主減速器的結(jié)構(gòu)型式,主要是根據(jù)齒輪類型、主動齒輪和從動齒輪的安裝方法以及減速型式的不同而異。驅(qū)動橋主減速器為適應(yīng)使用要求發(fā)展多種結(jié)構(gòu)型式:如單級主減速器、雙級主減速器、和單級主減速器加輪邊減速等。由于農(nóng)用運(yùn)輸車要求經(jīng)濟(jì)性較高,故采用單級主減速器。
在現(xiàn)代汽車的驅(qū)動橋上,主減速器齒輪采用得最廣泛的是“格里森”(Gleason)制或“奧利康”(Oerlikon)制得螺旋錐齒輪和雙曲面齒輪。由于雙曲面齒輪得螺旋角較大,則不產(chǎn)生根切得最少齒數(shù)可減少,所以可選用較少的齒數(shù),這又利于的傳動比傳動。同時(shí)雙曲面齒輪傳動平穩(wěn)噪聲小、負(fù)荷大、結(jié)構(gòu)緊湊等優(yōu)點(diǎn),所以本次設(shè)計(jì)采用雙曲面齒輪傳動。
§ 3.2 主減速比及計(jì)算載荷的確定
§3.2.1、主減速器比i0的確定
主減速比對主減速器的結(jié)構(gòu)型式、輪廓尺寸、質(zhì)量大小以及當(dāng)變速器處于最高檔位時(shí)汽車的動力性和燃油經(jīng)濟(jì)性都有直接影響。i0的選擇應(yīng)在汽車總體設(shè)計(jì)時(shí)和傳動系的總傳動比一起由整車動力計(jì)算來確定。
i0=0.377×rr×np/vamax×igH (3-1)
式中 rr: 車輪的滾動半徑 rr=0.3897m
np: 最大功率時(shí)發(fā)動機(jī)的轉(zhuǎn)速 np=3200r/min 最大功率88kw
vamax:最高車速 vamax=95 Km/h
igH: 變速器最高檔傳動比 igH=1
i0=0.377×rr×np/vamax×igH
=0.377×0.3897×3200/95×1=4.94878
§3.2.2、 齒輪計(jì)算載荷的確定
通常是將發(fā)動機(jī)最大轉(zhuǎn)矩配以傳動系最低檔傳動比時(shí)和驅(qū)動車輪打滑時(shí)這兩種情況下作用于主減速器從動齒輪上的轉(zhuǎn)矩的較小者,作為載貨汽車在強(qiáng)度計(jì)算中用以驗(yàn)算主減速器從動齒輪最大應(yīng)力的計(jì)算載荷。
1.按發(fā)動機(jī)最大轉(zhuǎn)矩和最低檔傳動比確定從動齒輪計(jì)算轉(zhuǎn)矩Tge
Tce=Temax×iTl×K0×ηT/N (3-2)
式中 Temax: 發(fā)機(jī)機(jī)最大轉(zhuǎn)矩 Temax =340 N·m
N : 驅(qū)動橋數(shù)目 N=2
iTL: 由發(fā)動機(jī)至所計(jì)算的主減速器從動齒輪之間的傳系最低檔傳動比
iTL=22.26
ηT:上述傳動部分傳動效率 取ηT=0.9
K0 :離合器產(chǎn)生沖擊載荷時(shí)超載系數(shù) K0=1
Tce = Temax×iTl×K0×ηT/N
=340×(1×4.452×5×1)×1×0.9 /2
=6811.56 N·m
2.按驅(qū)動輪打滑確定從動齒輪計(jì)算轉(zhuǎn)矩
= G2×?×rr/ηlB×ilB (3-3)
式中 G2: 滿載時(shí)一個(gè)驅(qū)動輪上的靜載荷系數(shù) ;
G2=35574×55%=19565.7N;
?: 輪胎與路面間的附著系數(shù), 取?=0.85;
rr: 車輪的滾動半徑 rr=0.3897m;
ηlB ilB : 分別為所計(jì)算的主減速器從動齒輪到驅(qū)動車輪之間的傳動效率和傳動比 ηlB=0.96、 ilB=1
Tcs=G2×?×rr/ηlB×ilB
=35574×55%×0.85×0.3897/0.96×1
=6751.1 N·m
3.按汽車日常行駛平均轉(zhuǎn)矩確定從動錐齒輪的計(jì)算轉(zhuǎn)矩
=/n (3-4)
式中,:為計(jì)算轉(zhuǎn)矩(N.m);
:為汽車日常行駛平均平均牽引力 N
:為主減速器從動錐齒輪到車輪之間的傳動比;
:為主減速器主動錐齒輪到車輪之間的傳動效率;
n: 驅(qū)動橋數(shù)目 n=2
:平均牽引力;
:平均計(jì)算轉(zhuǎn)矩;
=(+)rr(f +f+f)/iηn (3-5)
式中:=6000×9.8,=0,rr=0.3897m,i=5,η=0.96,
n=2, f=0, f=0.02, f=0.08。
=(+)rr(f +f+f)/iηn
=6000×9.8×0.3897(0.02+0.08+0)/(5×0.96×2)
=238.691N.m
=2×/d1=2×238.69×/62=7699.7N
T=FtRr/ n
=7699.7×0.3897/(1×0.96×2)
=1562.8N.m
主動錐齒輪的計(jì)算轉(zhuǎn)矩為
=/i
式中,為主動錐齒輪的計(jì)算轉(zhuǎn)矩 N.m;
為主、從動錐齒輪間的傳動效率,取0.9;
=/i (3-6)
=6751.1/5×0.85
=1588.5N.
§ 3.3 主減速器齒輪主要參數(shù)的計(jì)算
§ 3.3.1 主、從動齒輪齒數(shù)的選擇
對于單級主減速器,當(dāng)i0較大時(shí),則應(yīng)盡量使主動齒輪的齒數(shù)Z1取得小些,以得到滿意的驅(qū)動橋離地間隙。一般Z1可取7-12,為了磨合均勻主、從動齒輪的齒數(shù)Z1、Z2之間應(yīng)避免有公約數(shù),為了得到理想的齒面重疊系數(shù),其齒數(shù)之和應(yīng)不少于40。
查《汽車車橋設(shè)計(jì)》表3-12
Z1=7 Z2=i0×Z1=35
§ 3.3.2 從動齒輪節(jié)圓直徑及端面模數(shù)的選擇
根據(jù)從動錐齒輪的計(jì)算轉(zhuǎn)矩,按經(jīng)驗(yàn)公式
d2=kd2· (3-7)
式中,d2:從動錐齒輪的節(jié)圓直徑,㎜;
kd2:直徑系數(shù),取kd2=13~16;
Tj:計(jì)算轉(zhuǎn)矩,Tj=6751.1N·m
所以,d2=kd2·
=16×
=310.02㎜
圓整取 d2=310mm
從動錐齒輪大端模數(shù) m=d2/Z2=8.857
§3.3.3、齒面寬的選擇
汽車主減速器雙曲面齒輪的從動齒輪齒面寬F(mm)推薦為:
F=0.155×d2=48.05mm
取F=50mm
§3.3.4、雙曲面齒輪的偏移距E
轎車、輕型客車和越野汽車主減速器的E值,不應(yīng)超過從動齒輪節(jié)錐距的20%。E小于或者等于0.2 d2為62,取40。
§3.3.5、螺旋角的選擇
螺旋角是在節(jié)錐表面的展開圖上定義的,“格里森”制推薦用下式,近似預(yù)選主動齒輪螺旋角的名義值:
β1′=25+5+90·=43.68
式中:β 1′:主動齒輪名義螺旋角的預(yù)選值;
z1、z2:主、從動齒輪齒數(shù);
d2:從動齒輪節(jié)圓直徑 mm;
E:雙曲面齒輪的偏移距 mm。
圖3-1 雙曲面齒輪的偏移距和偏移方向
§3.3.6、圓弧齒準(zhǔn)雙曲面齒輪的幾何尺寸設(shè)計(jì)的計(jì)算
下表給了“格里森”制(圓弧齒)雙曲面齒輪的幾何尺寸的計(jì)算步驟,該表參考“格里森”制雙曲面齒輪1971年新的標(biāo)準(zhǔn)而制定的。表中的(65)項(xiàng)求得的齒線曲率半徑 與第七項(xiàng)的選定的刀盤半徑的差值不得超過值的。否則要重新計(jì)算(20)到(65)項(xiàng)的數(shù)據(jù)。當(dāng)<時(shí),則需要第(20)項(xiàng)tanη的數(shù)據(jù)增大。
否則,tanη減小。若無特殊的考慮,第二次計(jì)算時(shí),將tanη的數(shù)據(jù)增大10%即可。如果計(jì)算的結(jié)果還不能和接近,要進(jìn)行第三次計(jì)算,這次tanη的數(shù)據(jù)應(yīng)根據(jù)公式:
(3-9)
式中下標(biāo)1,2,3分別表示第一、第二和第三次計(jì)算的結(jié)果。
表3-1圓弧齒準(zhǔn)雙曲面齒輪的幾何尺寸的計(jì)算
序號
計(jì)算公式
結(jié)果
注釋
(1)
7
小齒輪齒數(shù)
(2)
35
大齒輪齒數(shù)
(3)
0.2
齒數(shù)比的倒數(shù)
(4)
F
45
大齒輪齒面寬
(5)
E
40
小齒輪軸線偏移距
(6)
310
大齒輪分度圓直徑
(7)
95.25
刀盤半徑
(8)
47.793°
小輪螺旋角的預(yù)選值
(9)
1.102587
(10)
0.24
(11)
0.972387302
(12)
130.6903175
大輪中點(diǎn)節(jié)圓半徑
(13)
0.0.2976157
齒輪偏置角初值
(14)
0.95468575
(15)
(14)+(9)(13)
1.28283301
小輪直徑放大系數(shù)k
(16)
(3)(12)
26.1380634
小輪中點(diǎn)節(jié)圓半徑
(17)
33.5307708
(18)
1.2
輪齒收縮率
(19)
578.0737602
截距Q
(20)
0.101615
0.1111777
0.113858
小輪偏置角η
(21)
1.005150
1.006228
1.006461
(22)
sinη
0.101094
0.111085
0.113127
(23)
η
5.802171°
6.377865°
6.495605°
(24)
0.330428
0.327
0.326298
大輪偏置角
(25)
0.350092
0.346023
0.345191
(26)
0.288764
0.321034
0.327723
小輪節(jié)錐角初值
(27)
0.960746
0.952138
0.950271
(28)
0.343929
0.343438
0.343374
(29)
0.938996
0.939175
0.93919
(30)
1.161836
1.162976
1.163122
(31)
-0.003944
-0.00433
-0.004379
(32)
(3)(31)
-0.001011
-0.00111
-0.001123
(33)
0.33053
0.327123
0.326425
(34)
0.350214
0.346169
0.345342
(35)
tan=
0.288664
0.320898
0.32758
小齒輪節(jié)錐角
(36)
16.8407839°
17.791332°
18.137761°
(37)
0.957113522.18002792
0.952176
0.950311
(38)
0.344025
0.343553
0.343493
齒輪偏值角校正值
(39)
20.12229°
20.093491°
20.08983°
(40)
0.93896
0.939133
0.939155
(41)
1.150152
1.150105
1.1501
(42)
48.994663°
48.993503°
48.99338°
(43)
0.656129
0.656145
0.656146
(44)
28.872373°
28.900012°
28.90355°
(45)
0.875697
0.875464
0.875435
(46)
0.551401
0.55203
0.552111
(47)
0.305854
0.339582
0.346564
大輪節(jié)錐角
(48)
72.993539°
71.243437°
70.885525°
(49)
0.956272
0.946893
0.944866
(50)
0.29248
0.321548
0.327457
(51)
29.265598
29.521257
29.578069
(52)
280.91943
255.524261
250.913296
(53)
310.185028
285.045518
280.491365
(54)
75.240275
75.965314
76.125759
(55)
66.520271
60.362561
59.245167
(56)
0.112903
0.096434
09308
極限壓力角
(57)
6.441587°
5.508229°
5.317769°
(58)
0.993687
0.995382
0.995696
(59)
0.004437
0.003757
0.003619
極限曲率半徑
(60)
0.000222
0.000208
0.00205
(61)
5005.003483
4585.4609
4510.083305
(62)
0.001742
0.003403
0.003743
(63)
0.006401
0.007368
0.007567
(64)
93.540228
81.171960
79.025902
(65)
rln=
94.134500
81.548551
79.3675
極限法
(66)
V=
0.843208
0.973347
1.000094
(67)
(50)(3); 1.0-(3)
0.083963
0.74359
(68)
;
77.632443
0.311303
(69)
1.0146143
(70)
(49)(51)
33.37188793
(71)
(12)(47)-(70)
0.527535
大輪節(jié)錐頂點(diǎn)到交叉點(diǎn)的距離
(72)
86.957637
大輪節(jié)點(diǎn)錐距
(73)
162.5366248
大輪外錐距
(74)
(73)-(72)
25.4917016
(75)
11.5724902
大輪平均工作
(76)
0.8108963
(77)
0.29682757
(78)
45°
兩側(cè)輪齒壓力角之和
(79)
sin
0.70710677
(80)
α
22.4999996°
平均壓力角α
(81)
cosα
0.9238795
(82)
tanα
0.41421355
(83)
10.71660516
雙重收縮齒的大輪齒頂角和齒根角之和
(84)
∑
216.210015
(85)
h
0.13
大輪齒頂高系數(shù)
( 86)
1.02
大輪齒根高系數(shù)
(87)
1.50442373
大輪中點(diǎn)齒頂高
(88)
11.85394
大輪中點(diǎn)齒根高
(89)
67.884705
大輪齒頂角
(90)
0.00817599
(91)
3.13504522°
大輪齒根角
(92)
sin
0.05468956
(93)
1.71284366
大輪齒頂高
(94)
13.24806999
大輪齒根高
(95)
C=0.15(75)+0.05
1.78587353
頂隙
(96)
14.9609137
大輪全齒高
(97)
13.1750401
大輪工作齒高
(98)
72.9521
大輪頂錐角
(99)
sin
0.95606013
(100)
cos
0.2931706
(101)
=(48)-(91)
69.3486
大輪根錐角
(102)
sin
0.93574369
(103)
cos
0.35268079
(104)
csc
0.37689892
(105)
311.031055
大齒輪外圓直徑
(106)
(70)+(74)(50)
41.0443181
大輪輪冠到軸交叉點(diǎn)的距離
(107)
39.4108969
(108)
-0.4015914
(109)
-4.658341096
(110)
0.040833
大輪頂錐錐頂?shù)捷S交叉點(diǎn)的距離
(111)
3.21721797
大輪根錐錐頂?shù)捷S交叉點(diǎn)的距離
(112)
(12)+(70)(104)
143.268146
工藝節(jié)錐的大輪節(jié)錐角
(113)
sin
0.27919674
(114)
cos
0.960233918
(115)
tan
0.29075909
(116)
0.33865606
小齒輪面錐角
(117)
19.79501557°
(118)
cos
0.940910236
(119)
tan
0.35992388
(120)
13.59973388
小輪面錐頂點(diǎn)到軸交叉點(diǎn)的距離
(121)
-2.532574676
(122)
tanλ
0.017552392
嚙合線和小輪節(jié)錐母線的夾角
(123)
1.005574755
(124)
16.20300528
0.999846
齒輪偏置角和λ的差
(125)
2.9542316
0.998671
小輪齒頂角
(126)
-0.066355762
-0.51307
(127)
1.0412o03586
(128)
125.7660396
(129)
0.942162348
(130)
(74)(127)
26.54205113
(131)
(128)+(130)(129)+(75)(126)
150.0050595
小輪輪冠到軸交叉點(diǎn)的距離
(132)
(4)(127)-(130)
25.51812816
小輪前輪冠到軸交叉點(diǎn)的距離
(133)
95.78631614
(134)
(121)+(131)
147.4724848
小輪大端齒頂圓直徑
(135)
106.1577375
(136)
140.9236247
確定小輪根錐的大輪偏置角
(137)
0.28384169
(138)
16.48962363°
(139)
cos
0.958871156
(140)
3.30842399
小輪根錐頂點(diǎn)到軸交叉點(diǎn)的距離
(141)
-22.66266135
(142)
sin
0.281112854
小輪根錐角
(143)
16.3266348
(144)
cos
0.95967472
(145)
tan
0.292143
(146)
0.2
最小法向側(cè)隙
(147)
0.1524
最大法向側(cè)隙
(148)
(90)+(42)
0.062866
(149)
(96)-(4)(148)
11.817636
(150)
112.5366248
在節(jié)平面內(nèi)大齒輪內(nèi)錐距
雙曲面齒輪副的理論安裝距與另外幾個(gè)尺寸參數(shù)的關(guān)系。
圖3—2 雙曲面齒輪副的安裝尺寸
§ 3.4 主減速器齒輪強(qiáng)度計(jì)算
§3.4.1、單位齒上的圓周力
按發(fā)動機(jī)最大扭矩計(jì)算時(shí):
p=Temax·ig·103/·F (3-10)
式中:p:單位齒長上的圓周力 N/mm ;
Temax:發(fā)動機(jī)最大扭矩 N/m;
ig:變速器Ⅰ檔傳動比;
d1:主動齒輪節(jié)圓直徑 mm;
F:從動齒輪的齒面寬 mm 。
p=Temax·ig·103/·F
=340×4.452×103 /×50
=976.568 N/mm<[p]=1429N/mm
§3.4.2、齒輪的彎曲強(qiáng)度計(jì)算
σ w=2·103TjK0KsKm/KvFzm2J (3-11)
式中: Tj:齒輪的計(jì)算轉(zhuǎn)矩 N·m;
K0: 超載系數(shù),取 K0=1;
Ks:尺寸系數(shù),反映材料性質(zhì)的不均勻性。Ks=;
Km:載荷分配系數(shù),取Km=1.10
Kv:質(zhì)量系數(shù),對于汽車驅(qū)動橋齒輪,當(dāng)齒輪接觸良好、周節(jié)及徑向跳動精度高時(shí),可取Kv=1;
Z:計(jì)算齒輪的齒數(shù);
m:端面模數(shù) mm;
J:計(jì)算彎曲應(yīng)力用的綜合系數(shù)。
σw=2·103TjK0KsKm/KvFzm2J
=2×103×6751.1×1×0.768×1.125/1×50×35×(310/35)2×0.302
=636.1125MPa 312.639MPa
汽車主減速器齒輪的彎曲應(yīng)力應(yīng)不大于700 MPa ,滿足要求。
圖3-3 彎曲計(jì)算用綜合系數(shù)J
§3.4.3、齒輪的接觸強(qiáng)度計(jì)算
σj= (3-12)
式中,T1j:主動齒輪計(jì)算轉(zhuǎn)矩 N·m;
Cp:材料的彈性系數(shù),對于鋼制齒輪副取232.6/mm;
d1:主動齒輪的節(jié)圓直徑 mm;
K0、 Kv 、Km :見上式說明;
Ks:尺寸系數(shù),可取 Ks=1;
Kf:表面質(zhì)量系數(shù),對于制造精密的齒輪可取 Kf=1;
F:齒面寬 mm,取齒輪副中較小的;
J:計(jì)算彎曲應(yīng)力用的綜合系數(shù)。
圖3—4 接觸強(qiáng)度計(jì)算用綜合系數(shù)J
σj=
=
=1825.22 Mpa
主從動齒輪的接觸應(yīng)力是相同的,許用接觸應(yīng)力為2800 Mpa。滿足條件要求。
§3.5 主減速器齒輪的材料及熱處理
汽車驅(qū)動橋主減速器的工作相當(dāng)繁重,與傳動系其它齒輪相比較,它具有載荷大、作用時(shí)間長、載荷變化多等特點(diǎn)。其損壞形式主要有:齒根彎曲折斷、齒面疲勞點(diǎn)蝕、磨損和擦傷等。據(jù)此對驅(qū)動橋齒輪的材料及熱處理應(yīng)有一下要求:
一、有高的彎曲疲勞強(qiáng)度和表面接觸疲勞強(qiáng)度及較好的齒面耐磨性;
二、輪芯部應(yīng)有適當(dāng)?shù)捻g性以適應(yīng)沖擊載荷,避免輪齒根部折斷;
三、鋼材的鍛造、切削與熱處理等加工性能好,熱處理變形小,以提高產(chǎn)品質(zhì)量,減少成本并降低廢品;
本次設(shè)計(jì)主減速器主、動齒輪材料選用20CrMnTi 。齒輪滲碳1.2—1.5,齒面淬火使其硬度達(dá)到58—64。
§3.6 主減速器錐齒輪軸承的載荷計(jì)算
§3.6.1 主減速器主動齒輪上的當(dāng)量轉(zhuǎn)矩的計(jì)算
= (3-13)
=
=309.6
式中 為變速器1,2,3,4檔使用率;
為變速器1,2,3,4檔傳動比;
為變速器處于1,2,3,4檔時(shí)發(fā)動機(jī)轉(zhuǎn)矩利用率;
為發(fā)動機(jī)最大轉(zhuǎn)矩。
§3.6.2 主從動圓錐齒輪齒面寬中點(diǎn)處的圓周力p的計(jì)算
= (3-14)
= (3-15)
===5832.76N
==5832.76=8634.37N
§3.6.3 雙曲面齒輪的軸向力與徑向力的計(jì)算
(1)雙曲面錐齒輪的軸向力和徑向力的計(jì)算
=
= =5259.4N
=
=564.27N
(2)從動齒輪的軸向力和徑向力的計(jì)算
=
=
=1889.8N
=
=2662.78N
§3.6.4 懸臂式支承主動錐齒輪的軸承徑向載荷的確定
一、懸臂式支承主動錐齒輪的軸承徑向載荷的確定
圖4-1 主動錐齒輪支承軸承
軸承A、B的徑向載荷、為:
=
=
=3532N
=
=
=4943.22N
二、軸承壽命的計(jì)算
(1) 初選軸承型號
根據(jù)已知軸徑和工作條件,初選軸承A為30309,B為30307。
查表得 =108KN,=130KN,=0.35,=1.7
=75.2KN,=82.5KN,=0.31,=1.9
(2) 計(jì)算兩軸承的內(nèi)部軸向力、及軸向載荷、
===1038.8N
===1300N
因?yàn)? +=5259.4+1038.8=6298.2N﹥
所以 ==1038.8N
=+=6298.2N
(3) 計(jì)算兩軸承的當(dāng)量載荷、
軸承A:==0.29﹤ 故查表得 =1,=0
軸承A在工作中受沖擊比較嚴(yán)重,故取=1.8
==1.8×3532=6357.2N
軸承B:=﹥ 故查表得=0.4,=1.9
工作中B沒有A受沖擊大,故取=1.2
=
=1.2×(0.4×4943.22+1.9×6298.2)
=10723N
(4) 計(jì)算軸承使用壽命
===94210.18h
===49712h
式中 —主減速器主動齒輪支承軸承的計(jì)算轉(zhuǎn)速,;
§3.6.5 主減速器從動齒輪支承軸承計(jì)算
一、單級主減速器從動齒輪支承軸承徑向載荷的確定
圖4-2 從動齒輪支承軸承
= (3-27)
=
=3378.9N
= (3-28)
=
=3650N
二、軸承壽命計(jì)算
(1)初選軸承型號
選C為30214型軸承,查表得=125, =97.5,e=0.8,Y=1.4.
D為30214型軸承, 查表得=125, =97.5,e=0.8,Y=1.4.
(2)計(jì)算兩軸承的內(nèi)部軸向力,及軸向載荷,
===1206.8N
==1303.5N
因?yàn)?=1303.5+1889.8=3193N﹥
所以==1303.5N
=+=3193N
(3)計(jì)算兩軸承當(dāng)量載荷,
軸承C:
==1.0﹥e,故查表得=0.4,=1.9.軸承C在工作中受到的沖擊大故取=1.5
=1.5×(0.4×3178.9+1.9×3193.5)
=7386.61N
軸承D: ==0.36﹤e,故查表得=1, =0;取=1.5
==1.5×3650=5475N
(4)計(jì)算軸承壽命
==
=97951h
==
= 120108h
式中為主減速器從動齒輪支承軸承的計(jì)算轉(zhuǎn)速。第四章 差速器設(shè)計(jì)
§ 4.1 差速器機(jī)構(gòu)方案分析
根據(jù)汽車行駛運(yùn)動學(xué)的要求和實(shí)際的車輪、道路以及他們之間的相互關(guān)系表明:汽車在行駛過程中左右車輪在同一時(shí)間內(nèi)所滾過的行程往往是有差別。例如,轉(zhuǎn)彎時(shí)外側(cè)車輪的行程總要比內(nèi)側(cè)的長。另外,即使汽車作直線行駛,也會由于左右車輪在同一時(shí)間內(nèi)所滾過的路面垂向波形的不同,或由于左右車輪輪胎氣壓、輪胎負(fù)荷、胎面磨損程度的不同以及制造誤差等因素引起左右車輪外徑不同或滾動半徑不相等而要求車輪行程不等。在左右車輪行程不等的情況下,如果采用一根整體的驅(qū)動車輪軸將動力傳遞給左右車輪,則會由于左右驅(qū)動車輪的轉(zhuǎn)速雖相等而行程卻又不相等的這一運(yùn)動學(xué)上的矛盾,引起某一驅(qū)動車輪產(chǎn)生滑轉(zhuǎn)或滑移。此外,由于車輪與路面間尤其在轉(zhuǎn)彎時(shí)有大的滑轉(zhuǎn)或滑移,易使汽車在轉(zhuǎn)向時(shí)失去抗側(cè)滑的能力而使穩(wěn)定性變壞。為了消除由于左右車輪在運(yùn)動學(xué)上的不協(xié)調(diào)而產(chǎn)生的這些弊病,汽車左右驅(qū)動輪間都裝有差速器。差速器保證了汽車驅(qū)動橋兩側(cè)車輪在行程不等時(shí)具有以不同速度旋轉(zhuǎn)的特性,從而滿足汽車行駛運(yùn)動學(xué)的要求。
圖4—1 普通圓錐齒輪差速器的工作原理簡圖
差速器的結(jié)構(gòu)型式有多種,其主要的結(jié)構(gòu)型式有:對稱式圓錐行星齒輪差數(shù)器、防滑差速器,防滑差速器又可分為自鎖式和強(qiáng)制鎖止式。對于農(nóng)用運(yùn)輸車來說,由于路面狀況一般,各驅(qū)動車輪與路面的附著系數(shù)變化小,,因此采用結(jié)構(gòu)簡單、工作平穩(wěn)、制造方便、造價(jià)又低的對稱式圓錐行星齒輪差數(shù)器。
§ 4.2 差速器齒輪主要參數(shù)的計(jì)算
行星齒輪數(shù)目的選擇:轎車常用2個(gè)行星齒輪,載貨汽車和越野汽車多用4個(gè)行星齒輪,少數(shù)汽車采用3個(gè)。本次設(shè)計(jì)采用4個(gè)行星齒輪。
1.球面半徑/由經(jīng)驗(yàn)公式:
/= (4-1)
其中---行星齒輪的球面半徑系數(shù),=2.5-3.0,取=2.76
---差速器計(jì)算轉(zhuǎn)矩取Tcs 和Tce兩者中較小值2621.48。
/===52.16㎜
2.錐齒輪的節(jié)錐距A0
A0=(0.980.99) (4-2)
=51.1251.64mm 取A=51
3.行星齒輪齒數(shù)Z1和半軸齒數(shù)齒數(shù)Z2
取Z1=11 Z2=18
查《機(jī)械設(shè)計(jì)實(shí)用手冊》 表8-3,
查《機(jī)械設(shè)計(jì)實(shí)用手冊》 圖8-3。
4.節(jié)錐角γ
(4-3)
(4-4)
5.錐齒輪大端端面模數(shù)me
me=
圓整后me=5
6.壓力角α
取壓力角α=22.5。
7.節(jié)圓直徑de
de1= × me=55
de2= × me=90
8.軸交角
∑=90。
9.周節(jié)
t=3.1416m=15.7
10.齒面寬F
=0.27×51.3
=13.85
圓整后取b=14
11.齒工作高 hg
hg=1.6m=8 mm
12.齒全高h(yuǎn)
h=1.788m+0.051=8.99 mm
13.齒頂高 h′
h2′=[0.430+]·m =2.84 mm
h1′=hg- h2′=5.16 mm
14.齒根高h(yuǎn)″
h1″=1.788m- h1′=3.78 mm
h2″=1.788m- h2′=6.1 mm
15.徑向間隙 c
c=h-h(huán)g=0.99mm
16.齒根角δ
δ1=arctan=4.0402o
δ2=arctan=6.4948o
17.面錐角γ0
γ01=γ1+δ2=37.9248°
γ02=γ2+δ1=62.2102°
18.根錐角γR
γR1=γ1-δ1=27.3898°
γR2=γ2-δ2=51.6752°
19.外圓直徑d0
d01=d1+2 h1′cosγ1=44.66 mm
d02=d2+2 h2′cosγ2=65.1mm
20.節(jié)錐頂點(diǎn)至齒輪外緣距離χ0
χ01=- h1′sinγ1=29.62mm
χ01=- h2′sinγ2=17.56mm
21.理論弧齒厚s
s1=t-s2=6 mm
s2=-( h1′- h2′)tanα-τm=5 mm
22.齒測間隙 B
B=0.127 mm
23.弦齒厚 SX
SX1=S1--=5.9122mm
SX2=S2--=4.93125mm
24.弦齒高 hxX=3.8095 mm
Hx2=2.0423 mm
25.行星齒輪軸直徑d及支承長度L
行星齒輪軸直徑d(mm)為
d=
==15.89mm 取d=18mm
行星齒輪在軸上的支承長度L為
L=1.1d=19.8mm
§ 4.3 差速器齒輪強(qiáng)度計(jì)算
差速器齒輪主要進(jìn)行彎曲強(qiáng)度計(jì)算,而對疲勞壽命則不予考慮,這是由于行星齒輪在差速器的工在作中經(jīng)常只起等臂推力桿的作用,僅在左右驅(qū)動輪有轉(zhuǎn)速差時(shí)行星齒輪和半軸齒輪之間才有相對滾動的緣故。
汽車差速器齒輪的彎曲應(yīng)力為:
σw=2·103TK0KsKm/KvFz2m2J (4-5)
式中 T:差速器一個(gè)行星齒輪給予一個(gè)半軸的轉(zhuǎn)矩 N·m;
T===1012.67N·m;
Tj: 計(jì)算轉(zhuǎn)矩;
n: 差速器行星齒輪數(shù)目;
Z2: 半軸齒輪齒數(shù);
K0: 超載系數(shù),取 K0=1;
Ks: 尺寸系數(shù),反映材料性質(zhì)不均勻性,與齒輪尺寸及熱處理等有關(guān)。
Km: 載荷分配系數(shù),取Km=1
Kv:質(zhì)量系數(shù),對于汽車驅(qū)動橋齒輪,當(dāng)齒輪接觸良好、周節(jié)及徑向跳動精度高時(shí),可取Kv=1;
F:齒面寬 mm
m:端面模數(shù)
J:計(jì)算汽車差速器齒輪彎曲應(yīng)力用的綜合系數(shù)。
圖4-2彎曲計(jì)算用綜合系數(shù)
σw=2·103TK0KsKm/KvFz2m2J
=
= 958.1 MPa
在T=min[]時(shí),差速器齒輪彎曲應(yīng)力應(yīng)不大于980MPa,滿足要求。
當(dāng)時(shí),MPa
σw=2·103TK0/KvFz2m2J
=
=202.86MPa
收藏