5噸三速電動葫蘆的設計【4張CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預覽哦。下載后都有,請放心下載,文件全都包含在內,【有疑問咨詢QQ:414951605 或 1304139763】=喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預覽哦。下載后都有,請放心下載,文件全都包含在內,【有疑問咨詢QQ:414951605 或 1304139763】=
學科門類: 單位代碼 : 畢業(yè)設計說明書(論文)5噸三速電動葫蘆的設計學生姓名所學專業(yè) 班 級 學 號 指導教師 XXXXXXXXX系二*年XX月目 錄1 緒論11.1引言11.2 電動葫蘆生產與發(fā)展趨勢12 設計要求13 設計方案24 電動葫蘆起升機構部件的設計24.1 起升機構的原理分析24.2電動機的選擇34.3 吊鉤的設計34.3.1 吊鉤的選擇34.3.2吊鉤的尺寸設計44.4 滑輪組的選擇44.5 鋼絲繩的選擇和校核44.5.1 鋼絲繩的選擇54.5.2 計算鋼絲繩所承受的最大靜拉力54.6 卷筒的設計54.6.1 卷筒直徑的確定54.6.2 卷筒長度的確定64.6.3 卷筒厚度的計算65 同軸式三級齒輪減速器的設計65.1 確定傳動裝置的總傳動比和分配轉動比65.2 計算傳動裝置的運動和動力參數75.3 傳動零件的設計計算85.3.1 高速軸齒輪的設計計算85.3.2 中速級齒輪的設計計算125.3.3 低速級齒輪的設計計算165.4 軸的設計205.4.1 第一軸的設計計算205.4.2 第二軸的設計計算225.4.3 第三軸的設計計算236 第二軸的校核246.1 水平方向的力266.1.1 求水平支反力266.1.2 求水平方向的彎距266.2 垂直方向的力266.2.1 求垂直支反力266.2.2 求垂直方向的彎矩266.3 求總彎距267 減速器外殼和運行機構的選擇278 結束語27致謝27參考文獻281 緒論1.1引言工程機械裝備已經成為我國國民經濟發(fā)展的支柱產業(yè)之一,占據世界工程機械總量第七位。工程機械發(fā)展異常迅猛,新的理念、新的技術、新的工藝不斷給予工程機械新的生命力;作為企業(yè)生產不可缺少的起重機械更是如此。因此起重機械是國民生產各部門提高勞動生產率、生產過程機械化不可缺少的機械設備。故本次設計在常規(guī)電動葫蘆的基礎上,設計小噸位(20T及以下)運行輕便的三速電動葫蘆。我國工程機械技術以及產品引進多以德國、日本、西班牙、韓國等機械裝備制造先進的國家為主,通過網上查閱以及圖書數據信息的收集,目前在多速電動葫蘆的研究方面,還是產品應用方面都很少。就國內而言,多速電動葫蘆的研究,目前發(fā)現(xiàn)的資料也很少,作為起重設備較大規(guī)模的以及起重基地的新鄉(xiāng),電動葫蘆多以為單速、雙速為主,均未有多速電動葫蘆方面的產品,針對市場的需求,研究開發(fā)三速電動葫蘆很有必要。新鄉(xiāng)是全國起重基地,為此必須要研究開發(fā)三速電動葫蘆,不斷改進起重運輸機械產品的性能,提高運轉速度和生產能力,提高自動化水平,使制造方便可靠、新型、高效能的輕小型起重設備滿足市場、生產的需要。電動葫蘆結構緊湊、使用點、線結合,自重輕、體積小、維修方便、經久耐用等特點而廣泛應用。現(xiàn)在市場上以單速、雙速電動葫蘆為主,多速電動葫蘆比較少。以滿足輕載快速、重載中速、慢速定位控制的要求。1.2 電動葫蘆生產與發(fā)展趨勢電動葫蘆是一種產量大、使用面廣的輕小型起重設備。我國目前生產、使用的電動葫蘆絕大多數是 1963年聯(lián)合設計的 CD/MD 型 ,此外還少量生產、使用 AS型和TV型電動葫蘆。就其設計質量的綜合評價 ,是不盡如人意的。電動葫蘆更新?lián)Q代慢 ,開發(fā)周期長 ,產品標準化、通用化水平不高 ,生產準備工作量大 ,投產上市速度慢的機械設備。因此縮短設計生產周期、提高設備的利用效率向多用途、高效率的方向發(fā)展。2 設計要求根據現(xiàn)有市場起升負載的常用情況。本次設計的三速電動葫蘆機械系統(tǒng)技術上要求:(1) 電動葫蘆的最大載重為5頓,起升高度為9米。(2) 電動葫蘆的強度等級為M,工作級別為M5。(3) 通過電機的變速實現(xiàn)在一個電機帶動下輸出3種速度3 設計方案電動葫蘆由起升機構和運行機構組成。起升機構包括吊鉤、鋼絲繩、滑輪組、電機、卷筒和減速器,是設計中的重點;運行機構為小車。電動葫蘆起升機構的排列主要為電動機、減速器和卷筒裝置3個部件。排列方式有平行軸a和同軸式b兩種方式,見圖1a b圖1 起升機構部件排列圖1電動機 2減速器 3卷筒裝置本設計優(yōu)先選用b方案,電機、減速器、卷筒布置較為合理。減速器的大齒輪和卷筒連在一起,轉矩經大齒輪直接傳給卷筒,使得卷筒只受彎矩而不受扭矩。其優(yōu)點是機構緊湊,傳動穩(wěn)定,安全系數高。減速器用斜齒輪傳動,載荷方向不變和齒輪傳動的脈動循環(huán),對電動機產生一個除彈簧制動的軸向力以外的載荷制動軸向力。當斜齒輪傾斜角一定時,軸向力大小與載荷成正比,起吊載荷越大,該軸向力也越大,產生的制動力矩也越大;反之亦然。它可以減小制動彈簧的軸受力,制動瞬間的沖擊減小,電動機軸受扭轉的沖擊也將減小,尤其表現(xiàn)在起吊輕載荷時,提高了電動機軸的安全性。圖a的結構電機與卷筒布置不再同一平面上通過減速器相連,使得減速器轉矩增大。4 電動葫蘆起升機構部件的設計電動葫蘆起升機構用來實現(xiàn)物料垂直升降,是任何起重機不可缺少的部分,因而是起重機最主要、也是最基本的機構。起升機構的安全狀態(tài),是防止起重事故的關鍵,將直接地關系到起重作業(yè)的安全。電動葫蘆起升機構包括:起升用錐形轉子制動電動機、減速器、卷筒裝置和吊鉤裝置等4個動力和傳動部件。4.1 起升機構的原理分析電動機通過聯(lián)軸器與中間軸連接,中間軸又通過花鍵連接與減速器的高速軸相連,減速器的低速軸帶動卷筒,吊鉤等取物裝置與卷繞在卷筒上的省力鋼絲繩滑輪組連接起來。當電動機正反兩個方向的運動傳遞給卷筒時,通過卷筒不同方向的旋轉將鋼絲繩卷入或放出,從而使吊鉤與吊掛在其上的物料實現(xiàn)升降運動,這樣,將電動機輸入的旋轉運動轉化為吊鉤的垂直上下的直線運動。常閉式制動器在通電時松閘,使機構運轉;在失電情況下制動,使吊鉤連同貨物停止升降,并在指定位置上保持靜止狀態(tài)。當滑輪組升到最高極限位置時,上升極限位置限制器被觸碰面動作,使吊鉤停止上升。當吊載接近額定起重量時,起重量限制器及時檢測出來,并給予顯示,同時發(fā)出警示信號,一旦超過額定值及時切斷電源,使起升機構停止運行,以保證安全。4.2電動機的選擇本次設計為5噸三速電動葫蘆,電動機采用錐形轉子制動電動機,電動機的型號由電氣設計方面的同學給出。(見圖2)電動的額定功率為7.5kw,轉速為1400r/min。圖2 錐形轉子制動電動機4.3 吊鉤的設計吊鉤的設計主要包括:吊鉤的選擇、尺寸的設計兩部分。4.3.1 吊鉤的選擇吊鉤按制造方法可分為鍛造吊鉤和片式吊鉤。鍛造吊鉤又可分為單鉤和雙鉤。單鉤一般用于小起重量,雙鉤多用于較大的起重量。鍛造吊鉤材料采用優(yōu)質低碳鎮(zhèn)靜鋼或低碳合金鋼,如20優(yōu)質低碳鋼、16Mn、20MnSi、36MnSi。本次設計的是5噸的葫蘆,屬于起重設備的小噸位設計,結合電葫蘆的生產現(xiàn)狀和使用情況由1選用鍛造單鉤。4.3.2吊鉤的尺寸設計單鉤:吊鉤鉤孔直徑與起重能力有一定關系:(1) (2)鉤身各部分尺寸(見圖3)間的關系如下:(3) (4)(5) 圖3 鍛造單鉤計算得D=24 S=36 H=56 L1=175 L2=28對比單、雙速吊鉤的設計尺寸,相比并進行放大,能夠滿足安全要求。4.4 滑輪組的選擇鋼絲繩一次繞過若干定滑輪和動滑輪組成的滑輪組,可以達到省力或增速的目的。通過滑輪可以改變鋼絲繩的運動方向。平衡滑輪還可以均衡張力?;喗M的倍率大小,對驅動裝置尺寸有較大的影響。為了使結構緊湊,體積小,選用滑輪組倍率m2。由1查表2-7得滑輪組效率0.994.5 鋼絲繩的選擇和校核鋼絲繩的選擇和校核包括:鋼絲繩的選擇、鋼絲繩所受的最大靜拉力、鋼絲繩破斷拉力。4.5.1 鋼絲繩的選擇鋼絲繩是起重機械中最常用的構件之一,由于它具有強度高、自重輕、運動平穩(wěn)、極少斷裂等有點。根據現(xiàn)在的使用情況和參考工廠中實際使用的鋼絲繩,由2表8-1-1、8-1-6查的鋼絲繩型號選為6X37-15-1550-I-右。4.5.2 計算鋼絲繩所承受的最大靜拉力鋼絲繩所承受的最大靜拉力(即鋼絲繩分支的最大靜拉力)為:(6)式中: -額定起升載荷,指所有起升質量的重力,包括允許起升的最大有效物品、取物裝置(如下滑輪組吊鉤、吊梁、抓斗、容器、起重電磁鐵等)、懸掛撓性件以及其 它在升降中的設備的質量的重力; Z-繞上卷筒的鋼絲繩分支數,單聯(lián)滑輪組Z=1,雙聯(lián)滑輪組Z=2; m-滑輪組倍率; -滑輪組的機械效率。其中490000N ,m2,0.99所以24.74.5.3 計算鋼絲繩破斷拉力計算鋼絲繩破斷拉力為:(7) =n式中:n-安全系數,根據機構工作級別查表確定,n5.5;=150=136所以鋼絲繩滿足要求。4.6 卷筒的設計卷筒是用來卷繞鋼絲繩的部件,它承載起升載荷,收放鋼絲繩,實現(xiàn)取物裝置的升降。4.6.1 卷筒直徑的確定卷筒的直徑式卷筒集合尺寸中最關鍵的尺寸,其名義直徑D是指光面卷筒的卷筒外包直徑尺寸,由槽卷筒取槽底直徑,大小按下式確定。(8)式中-按鋼絲繩中心計算的最小卷筒直徑,mm h-與機構工作級別和鋼絲繩有關的系數,由2 8-1-54查表為18 d-鋼絲繩的直徑,mm 計算的270mm4.6.2 卷筒長度的確定(9)由2表8-1-53卷筒幾何尺寸計算:(10) 式中L-卷筒長度,-卷筒上螺旋繩槽部分的長度,-固定鋼絲繩所需要的長度,-卷筒兩端多余部分的長度,P-繩槽節(jié)距, -最大起升高度,m-滑輪組倍率,-卷筒的計算直徑按照卷筒長度示意圖計算 450mm,54mm,30mm,L554mm4.6.3 卷筒厚度的計算對于鑄鋼卷筒,由2卷筒的設計計算表8-1-59查得式中-卷筒壁厚,-鋼絲繩直徑 所以15mm5 同軸式三級齒輪減速器的設計電動葫蘆減速器是本次設計的重要部分,也是電動葫蘆起升機構中的重要組成部分,所以單獨進行計算。其傳動關系如圖4所示。圖4 同軸式三級傳動減速器示意圖圖中所涉及到的零件在下面有具體標示,在次略。5.1 確定傳動裝置的總傳動比和分配轉動比(1) 總傳動比 =81.2(2)分配減速器的各級傳動比:按同軸式布置。由2表15-1-3三級圓柱齒輪減速器分配傳動比,查的=5.66,=3.5則低速級傳動比= 4.095.2 計算傳動裝置的運動和動力參數計算傳動裝置的運動和動力參數包括:計算傳動裝置的運動和動力參數、傳動零件的設計計算、軸的設計。(1) 各軸轉速n=n=nm = 1400n=nnn=n(2)各軸輸入轉矩T=TdT T=T= T=TT=(3) 各軸入輸功率Pd=7.5KWP=PdPd.P=P.P=P=PPP=PPP=PPP=PP5.3 傳動零件的設計計算設計減速器的傳動零件包括高速軸、中間軸、低速軸齒輪的設計5.3.1 高速軸齒輪的設計計算(1) 選擇齒輪材料:由3表10-1選擇齒輪材料為40cr,調質和表面淬火處理或氮化4855 HRC(2) 按齒面接觸疲勞強度設計選擇齒數取 z1=12, z2=i1z1=5.6612=68齒寬系數 由4表14-1-79,選=0.8初選螺旋角 =初選載荷系數 按齒輪非對稱布置速度中等沖擊載荷不大來選擇Kt=1.6轉距T T1=5.08104 彈性系數ZE 由4表14-1-105 ZE=189.8確定變位系數 z1=12 z2=68 a=20 h*an=h*acos由4圖14-1-4查的x1=0.38 x2=-0.38節(jié)點區(qū)域系數ZH X=0 = 查4圖14-1-16 ZH=2.46重合度系數Z縱向重合度0.19端面重合度由4圖14-1-7查的重合度則 由4圖14-1-19查得 螺旋角系數 許用接觸應力接觸疲勞極限由4圖14-1-24查得大小齒輪的接觸疲勞極限為Hlim1=Hlim2=1160應力循環(huán)次數 N1=60n1Lh=60140016300=5.29108N2=接觸疲勞壽命系數由5圖6.4-10查得KHN1=1.08 KHN2=1.14計算接觸疲勞許用應力取失效概率為1安全系數S111.081160=12532= =1.141160=1322則(3)計算小齒輪分度圓直徑d1t(11)小齒輪分度圓直徑d1t=由公式11計算可得:驗算圓周速度 選擇精度等級 根據圓周速度由56.4-19、6.4-20選擇齒輪精度等級為7級(4)計算齒寬b及模數mntb= (5) 計算載荷系數K使用系數 由4表14-1-81KA=1.25動載系數KV 根據圓周速度v=1.88由4查圖14-1-14 KV1.09齒間載荷分配系數 根據由5圖6.4-3查得=1.20齒間載荷分配系數K 由4表14-1-99齒輪裝配時檢驗調整 K1.05+0.26(1+0.6)+0.1610-3b 1.05+0.26(1+0.60.82)0.82+0.1610-322.54=1.28載荷系數K KKA KVK=1.251.091.201.28=2.09修正小齒輪直徑 計算模數mn mn=(6)按齒根彎曲疲勞強度設計(12)計算載荷載荷系數K 由 K1.28 由3圖10-13查得=1.28K= KA KV=1.251.091.201.15=1.88齒輪的彎曲疲勞強度極 由4圖15-1-53查得齒形系數 由當量齒數 zz由4圖14-1-47 應力修正系數由4圖14-1-47 重合度系數由4表14-1-114查得 = cos=螺旋角系數 由4圖14-1-49根據 查得0.98尺寸系數 由4表14-1-119的公式 5時,取=5 =2彎曲壽命系數 根據N1=5.29108 N2=9.35107由5圖6.4-11查得 計算許用彎曲疲勞應力 取彎曲疲勞安全系數 S=1.41=2計算大、小齒輪的并加以比較=小齒輪的數值較大由公式12計算可得:對比計算結果,由齒面接觸疲勞強度計算的法面模數mn與由齒根彎曲疲勞強度計算的法面模數相差不大,取標準值mn2.5,取分度圓直徑d1=30.30則 ,取 (7) 幾何尺寸計算計算中心距將中心距圓整為105。按圓整后的中心距修正螺旋角因值改變不多,故參數等不必修正。計算大、小齒輪的分度圓直徑計算齒輪寬度圓整后取; 。5.3.2 中速級齒輪的設計計算(1)選擇齒輪材料:由3表10-1選擇齒輪材料為40cr,調質和表面淬火處理或氮化4855 HRC(2) 按齒面接觸疲勞強度設計選擇齒數取 z1=12, z2=i1z1=3.512=42齒寬系數 由4表14-1-79,選=0.8初選螺旋角 =初選載荷系數K 選擇Kt=1.6按齒輪非對稱布置速度中等沖擊載荷不大來選擇轉距T T=2.7105彈性系數ZE 由4表14-1-105 ZE=189.8確定變位系數 z1=12 z2=42 a=20 h*an=h*acos由4圖14-1-4查的x1=0.38 x2=-0.38節(jié)點區(qū)域系數ZH X=0 = 查4圖14-1-16 ZH=2.46重合度系數Z縱向重合度 0.19端面重合度 由4圖14-1-7查得重合度則 由4圖14-1-19查得由螺旋角系數許用接觸應力接觸疲勞極限由4圖14-1-24查得大小齒輪的接觸疲勞極限為Hlim1=Hlim2=1160應力循環(huán)次數N1=60n1Lh=60247.3516300=9.35107N2=接觸疲勞壽命系數由圖56.4-10查得 KHN1=1.19 KHN2=1.15計算接觸疲勞許用應力取失效概率為1安全系數S111.191160=13802= =1.151160=1344 則 (3) 計算小齒輪分度圓直徑d1t小齒輪分度圓直徑d1t=由公式11計算可得:驗算圓周速度 選擇精度等級 根據圓周速度由56.4-19、6.4-20選擇齒輪精度等級為7級(4)計算齒寬b及模數mntb= mnt (5) 計算載荷系數K使用系數 由4表14-1-81KA=1.25動載系數KV 根據圓周速度v=0.6由4圖14-1-14 KV1.05齒間載荷分配系數 根據由5圖6.4-3查得=1.10齒間載荷分配系數K 由4表14-1-99齒輪裝配時檢驗調整 K1.05+0.26(1+0.6)+0.1610-3b 1.05+0.26(1+0.60.82)0.82+0.1610-334.26=1.28載荷系數K KKA KVK=1.251.051.101.28=1.85修正小齒輪直徑 計算模數mnt (6) 按齒根彎曲疲勞強度設計 計算載荷載荷系數K 由 K1.28 由4圖10-13查得=1.22K= KA KV=1.251.051.101.22=1.76齒輪的彎曲疲勞強度極 由4圖15-1-53查得齒形系數 由當量齒數 z z由4圖14-1-47 應力修正系數由4圖14-1-47 重合度系數由4表14-1-114查得cos= = 螺旋角系數 由4圖14-1-49根據 查得0.98尺寸系數 由4表14-1-119的公式 5時,取=5 =2 彎曲壽命系數 根據N1=5.29108 N2=9.35107由5圖6.4-11查得 計算許用彎曲疲勞應力 取彎曲疲勞安全系數 S=1.4 1=2計算大、小齒輪的并加以比較=小齒輪的數值較大由公式12計算可得: 對比計算結果,由齒面接觸疲勞強度計算的法面模數mn與由齒根彎曲疲勞強度計算的法面模數相差不大,取標準值mn4.0,取分度圓直徑d1=44.96則 ,則(7) 幾何尺寸計算計算中心距將中心距圓整為110。按圓整后的中心距修正螺旋角 因值改變不多,故參數等不必修正。計算大、小齒輪的分度圓直徑 計算齒輪寬度 圓整后??;。5.3.3 低速級齒輪的設計計算(1) 選擇齒輪材料:由3表10-1選擇齒輪材料為40cr,調質和表面淬火處理或氮化4855 HRC(2) 按齒面接觸疲勞強度設計選擇齒數取 z1=1, z2=i1z1=4.0911=45齒寬系數 由4表14-1-79,選=0.8初選螺旋角 =初選載荷系數K 選擇Kt=1.6 按齒輪非對稱布置速度中等沖擊載荷不大來轉距T T=9.2105彈性系數ZE 由4表14-1-105 ZE=189.8確定變位系數 z1=12 z2=42 a=20 h*an=h*acos由4圖14-1-4查的x1=0.35 x2=-0.35節(jié)點區(qū)域系數ZH X=0 = 查4圖14-1-16 ZH=2.46重合度系數Z縱向重合度 0.17端面重合度 由4圖14-1-7查得重合度則 由螺旋角系數許用接觸應力接觸疲勞極限由4圖14-1-24查得大小齒輪的接觸疲勞極限為Hlim1=Hlim2=1160應力循環(huán)次數 N1=60n1Lh=6070.6716300=2.67107N2=接觸疲勞壽命系數由5圖6.4-10查得KHN1=1.20 KHN2=1.15計算接觸疲勞許用應力取失效概率為1安全系數S111.231160=14272= =1.391160=1612 則(3) 計算小齒輪分度圓直徑d1t小齒輪分度圓直徑 d1t=由公式11計算可得:=驗算圓周速度 選擇精度等級 根據圓周速度由56.4-19、6.4-20選擇齒輪精度等級為7級(4)計算齒寬b及模數mnt b= mnt (5) 計算載荷系數K使用系數 由4表14-1-81KA=1.25動載系數KV 根據圓周速度v=0.24由4圖14-1-14 KV1.05齒間載荷分配系數 根據由5圖6.4-3查得=1.10齒間載荷分配系數K 由4表14-1-99齒輪裝配時檢驗調整 K1.05+0.26(1+0.6)+0.1610-3b1.05+0.26(1+0.60.82)0.82+0.1610-350.46=1.29載荷系數K KKA KVK=1.251.051.101.29=1.86修正小齒輪直徑 計算模數mnt (6) 按齒根彎曲疲勞強度設計 計算載荷載荷系數K 由 K1.29 由3圖10-13查得=1.25K= KA KV=1.251.051.101.25=1.80齒輪的彎曲疲勞強度極 由4圖15-1-53查得齒形系數由當量齒數 z z由4圖14-1-47 應力修正系數由4圖14-1-47 重合度系數由4表14-1-114查得cos= = 螺旋角系數 由4圖14-1-49根據 查得0尺寸系數 由4表14-1-119的公式 5時,取=5 =2彎曲壽命系數 根據N1=5.29108 N2=9.35107由5圖6.4-11查得 計算許用彎曲疲勞應力 取彎曲疲勞安全系數 S=1.4 1=2計算大、小齒輪的并加以比較 = 大齒輪的數值較大由公式12計算可得: 對比計算結果,由齒面接觸疲勞強度計算的法面模數mn與由齒根彎曲疲勞強度計算的法面模數相差不大,取標準值mn6.0,取分度圓直徑d1=63.07則 ,則(7) 幾何尺寸計算計算中心距 將中心距圓整為170。按圓整后的中心距修正螺旋角 因值改變不多,故參數等不必修正。計算大、小齒輪的分度圓直徑 計算齒輪寬度 圓整后??;。5.4 軸的設計減速器軸的設計包括:第一軸、第二軸、第三軸的設計計算以及軸上零件的設計。5.4.1 第一軸的設計計算(1) 求作用載齒輪上的力因已知高速級大齒輪的分度圓直徑為 (2) 初步估算軸的最小直徑1) 選擇軸的材料 選軸的材料為45鋼,調質處理。由2根據表5-1-1查得,。由2根據表5-1-19取,于是得考慮軸端有鍵,軸徑應增大45%,取d=28(3) 選擇花鍵輸出軸的最小直徑顯然是安裝鍵處軸的直徑d。為了使所選的軸直徑d-=28于鍵相適應,故需同時選取鍵型號。根據d=28中系列由4表15-1-29選取Z-6-281)校核鍵連接的強度其主要失效行式是工作面被壓潰(靜強度)(14)靜連接 h= 按照中等使用和制造情況,齒面經熱處理查得,取 l,可取l=50 (4) 軸的結構設計擬定軸上零件的裝配方案見減速器圖。(5) 根據軸向定位的要求確定軸的各段直徑和長度1) 根據軸向定位的要求確定軸的各段直徑和長度 為滿足矩形花鍵的軸向定位要求,軸段右端需制出一軸肩,故取段直徑d-=30.鍵與軸配合的長度L=50 初步選擇滾動軸承。因軸承主要承受徑向載荷也可承受小的軸向載荷,故選用深溝球軸承。參照工作要求并依據d-=30,故選用單列深溝球軸承6206系列,其尺寸為。右端滾動軸承采用齒輪軸進行軸向定位。因齒輪的分度圓直徑d=30.30,因此,取d=25.參照工作要求并依據d=25,故選用6405系列,其尺寸為 根據齒輪的直徑取齒輪軸處的軸段的直徑d=37.1軸承端蓋的總寬的為20。根據軸承端蓋的裝拆及便于對軸承添加潤滑脂的要求,取端蓋的外端面與矩形花鍵的距離為76,小齒輪寬度為45,由空心軸長度為226則L=226+76+45+20=367。齒輪寬度為35,則L=35,右端軸承用軸肩定位,因此L=4。(6)軸上零件的周向定位滾動軸承與軸的軸向定位是借過渡配合來保證的,此處選軸的直徑公差為m6。(7)確定軸上圓角和倒角由3表15-2,取軸端倒角為,各軸肩處的圓角半徑見減速器圖5.4.2 第二軸的設計計算(1) 求作用載齒輪上的力因已知大齒輪的分度圓直徑為 (2) 初步估算軸的最小直徑選擇軸的材料 選軸的材料為45鋼,調質處理。由2根據表5-1-1查得 由2根據表5-1-19,取,于是得 (3) 軸的結構設計擬定軸上零件的裝配方案見減速器圖。(4) 根據軸向定位的要求確定軸的各段直徑和長度1) 初步選擇滾動軸承。因軸承主要承受徑向載荷也可承受小的軸向載荷,故選用深溝球軸承。參照工作要求并依據最小值徑d=35,故選用單列深溝球軸承6407系列,其尺寸為。則右端采用同樣型號的滾動軸承支撐。2) 滾動軸承的左端采用齒輪軸的軸肩軸向定位。取L25,則齒輪的右端有一軸軸肩高度取h7,則軸環(huán)的直徑d49。軸環(huán)寬度b,取L=12。齒輪的齒頂圓直徑為59,則d59,因為齒輪輪轂寬度為45,則L=45。齒輪的左邊采用軸肩進行定位,軸肩高度取h=7,則軸環(huán)的直徑d45。軸環(huán)寬度b,取L12.3) 取安裝齒輪處的軸段直徑d=35,右齒輪與右端滾動軸承之間采用套筒進行軸向定位。已知齒輪輪轂的寬度30,為了使套筒端面可靠地壓緊齒輪,此軸段應略短于輪轂寬度,故取L=26.(5) 軸上零件的周向定位齒輪與軸的周向定位均采用平鍵連接。按d由手冊查得平鍵截面(GB/T1096-1979),鍵槽用鍵槽銑刀加工,長為22(標準鍵長見GB/T1096-1979),同時為了保證齒輪與軸配合有良好的對中性,故選用齒輪轂與軸的配合為H7/n6;滾動軸承與軸的軸向定位是借過渡配合來保證的,此處選軸的直徑公差為m6.(6) 確定軸上圓角和倒角由3表15-2,取軸端倒角為,各軸肩處的圓角半徑見減速器圖。 5.4.3 第三軸的設計計算(1) 求作用載齒輪上的力因已知大齒輪的分度圓直徑為 (2) 初步估算軸的最小直徑選擇軸的材料 選軸的材料為45鋼,調質處理。由2根據表5-1-1查得 由2根據表5-1-19,取A0=110,于是得 (3) 軸的結構設計擬定軸上零件的裝配方案見減速器圖。(4) 根據軸向定位的要求確定軸的各段直徑和長度1) 初步選擇滾動軸承。因軸承只能承受徑向載荷,因采用游動支撐故選用圓柱滾子軸承。參照工作要求并依據最小值徑d=55,故選用內圈有單擋邊的NJ210E系列,其尺寸為。則L18。2) 左端齒輪與左端軸承之間采用軸肩定位。軸肩高度取h4,則軸環(huán)的直徑d63。軸環(huán)寬度b,取L=8。安裝左端齒輪的直徑為65,則d60,因為齒輪輪轂寬度為60,則L=45。齒輪的左邊采用軸肩進行定位,軸肩高度取h=4,則軸環(huán)的直徑d63。軸環(huán)寬度b,為防止低速軸大齒輪與中間軸發(fā)生干取L24.3) 取安裝齒輪處的軸段直徑d=55,右齒輪與右端滾動軸承之間采用套筒進行軸向定位。已知齒輪輪轂的寬度40,為了使套筒端面可靠地壓緊齒輪,此軸段應略短于輪轂寬度,故取L=38. 右端滾動軸承采用軸肩進行軸向定位,軸肩高度取h=8,則軸環(huán)的直徑d39。軸環(huán)寬度b,為防止齒輪之間發(fā)生干涉取L35.4) 因右端軸采用固定支撐需用滾動軸承,根據d39,則選擇d35。因軸承主要承受徑向載荷也可承受小的軸向載荷,故選用深溝球軸承。參照工作要求并依據值徑d=35,故選用單列深溝球軸承6407系列,其尺寸為(5) 軸上零件的周向定位齒輪與軸的周向定位均采用平鍵連接。按d由手冊查得平鍵截面(GB/T1096-1979),鍵槽用鍵槽銑刀加工,長為36(標準鍵長見GB/T1096-1979),同時為了保證齒輪與軸配合有良好的對中性,故選用齒輪轂與軸的配合為H7/n6;滾動軸承與軸的軸向定位是借過渡配合來保證的,滾動軸承與軸的軸向定位是借過渡配合來保證的,此處選軸的直徑公差為m6.(6) 確定軸上圓角和倒角由3表15-2,取軸端倒角為,各軸肩處的圓角半徑見減速器圖。6 第二軸的校核根據各軸承受的載荷利用材料力學對第二軸進行校核。根據軸的結構圖作出軸的載荷分析圖5。軸的校核包括:水平方向力的計算、垂直方向力的計算、總彎矩的計算、按彎扭合成應力校核軸的計算。圖5軸的載荷分析圖6.1 水平方向的力水平方向的力包括:水平支反力、水平方向的彎矩。6.1.1 求水平支反力6.1.2 求水平方向的彎距6.2 垂直方向的力垂直方向的力包括:垂直支反力、垂直方向的彎矩。6.2.1 求垂直支反力6.2.2 求垂直方向的彎矩6.3 求總彎距根據校核理論應在以上基礎上,針對水平方向的彎矩、垂直方向的彎矩計算總彎矩。則的數值較大。6.4 按彎扭合成應力校核軸的強度進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面基準面2)的強度。由表中數值,并取a=0.6,軸的計算應力前已選定軸的材料為45鋼,由2根據表5-1-1查得。因此,故安全。7 減速器外殼和運行機構的選擇減速器外殼采用鑄造外殼不是設計的重點,因與二級同軸式傳動減速器外形差別不大,故在次借用。運行機構在此次設計中不作為重點,運行小車的電機和減速器均采用現(xiàn)有的成品,在此不在單獨設計。8 結束語本問研究的用于中載小噸位的電動葫蘆 具有以下特點:(1)三速電動葫蘆運行速度比市場現(xiàn)有的電動葫蘆更能滿足用戶的需求。(2)吊具具有很大的質量和很高的勢能,被搬運的物料范圍廣泛。(3)起重作業(yè)范圍大,電動葫蘆和橋式起重機組成多種運動。速度多變的可傳動零件,形成起重機械的危險點多且分散的特點,使危險的影響范圍加大。(4)作業(yè)條件復雜多變。致謝本課題是在指導老師的悉心指導下完成的。在整個研究過程中,指導老師具有嚴謹的治學態(tài)度,豐富的實踐經驗,在治學及做人方面使我受益匪淺,在次衷心感謝老師對我的關心指導和幫助。同時也感謝本組同學在我做課題的過程中給予我的巨大幫助和鼓勵。還要特別感謝本班的一些同學在我寫論文期間給我提出的寶貴意見和關心支持。在此,對導師給我提供的良好學習和實驗環(huán)境致以真誠的謝意!參考文獻1黃大巍,李風,毛文杰.現(xiàn)代起重機械M.北京:化學工業(yè)出版社,20062成大先.機械設計手冊(第一冊)M.北京:化學工業(yè)出版社,20063濮良貴,紀名剛.機械設計M.北京:高等教育出版社,20054成大先.機械設計手冊(第二冊)M.北京:化學工業(yè)出版社,20065陳榕林.機械設計應用手冊M.北京:科學技術文獻出版社,19956陳道南.起重運輸機械J. 北京:冶金工業(yè)出版社 ,1988 7宵立群.新一輪起重機競爭從電動葫蘆開始J.起重運輸機械,2006,(04)8林國湘.疲勞強度的模糊可靠性設計J.機械設計,1996(4):9119李偉,李瑞華.起重機智能控制的發(fā)展現(xiàn)狀與思考J. 煤礦機械,200610陳等云.電動葫蘆起升級構模塊化設計J.起重運輸機械,200311徐曉松,謝維達.異步電動機泵控軟起動器的軟??刂艱.北京:中國電力出版社,199912HindhedaI,Uffe.Machine Design FundamentalsA Practical Approach.New York:wiley,198313Rajput R K.Element of Machanical Engineering.Katson Publ.House,198514須雷.新型DR鋼絲繩電動葫蘆J. 起重運輸機械 , 2006,(9)15楊越興.電動葫蘆的噪聲問題.起重運輸機械J,1998(10):303216車荷香.齒輪傳動的優(yōu)化設計A.第一屆全國機械優(yōu)化設計學術會議論文C,198231英文原文:SHAFT AND GEAR DESIGNAbstract: The important position of the wheel gear and shaft can t falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, useding for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many waysKey words : Wheel gear ; ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane .We shall study gears in which the forces have three dimensions.The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid. The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side byside on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft,the hand of the gears should be selected so as to produce the minimum thrust load Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power There is on difference between a crossed heli cal gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is , a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same handWorm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gearsWorm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. . A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of doubleenveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand ofhelix as for crossed helical gears, but the helix angles are usually quite different The helix angle on the worm is generally quite large, and that on the gear very small Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angleWhen gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity In these cases it is often go od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution The tooth action between such gears is a combination of rolling and sliding alonga straight line and has much in common with that of worm gears A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength tobe important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time The word shaft covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits Whenever possible, the power-transruission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliabilityBecause of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake two in ertias 11 and 12 traveling at the respective angular velocities Wl and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall beinterested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3。 Band type4. Disk or axial type5 Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary1. Assume or determine the distribution of pressure on the frictional surfaces2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactionsMiscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a greatmany teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal An overrunning clutch or coupling permits the driven member of a machine to freewheel or overrun because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtainedIntroduciton of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majorityof the machining is not only supporting the workpiece also supporting tools and equipment to complete. Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on the basis of Many parts, if any other means of production belonging to the largescale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting ParametersCutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool. Cutting Tools must be of a suitable material to manufacture, it must be strong, tough hard and wear-resistant. Tool geometry - to the tip plane and cutter angle characteristics - for each cutting process must be correct. Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts - with knives. Generally, the more hard work piece materialthe lower the rate. Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。 Depth of penetration of a cutting tool - to inches dollars - is the tool to the work piece distance. Rotary cutting it to the chip or equal to the width of the linear cutting chip thickness. Rough than finishing, deeper penetration of a cutting tool depth.Wears of Cutting To01We already have been processed and the rattle of the countless cracks edge tool we learn that tool wear are basically three forms : flank wear, the former flank wear and V-Notch wear. Flank wear occurred in both the main blade occurred vice blade On the main blade, shoulder removed because most metal chip mandate, which resulted in an increase cutting force and cutting temperature increase, If not allowed to check, That could lead to the work piece and the tool vibration and provide for efficient cutting conditions may no longer exist. Vicebladed on, it is determined work piece dimensions and surface finish. Flank wear size of the possible failure of the product and surface finish are also inferior. In most actual cutting conditions, as the principal in the former first deputy flank before flank wear, wear arrival enough, Tool will be effective, the results are made unqualified partsAs Tool stress on the surface uneven, chip and flank before sliding contact zone between stress, in sliding contact the start of the largest, and in contact with the tail of zero, so abrasive wear in the region occurred. This is because the card cutting edge than the nearby settlements near the more serious wear, and bladed chip due to the vicinity of the former flank and lost contact wear lighter. This resultsfrom a certain distance from the cutting edge of the surface formed before the knife point Ma pit, which is usually considered before wear. Under normal circumstances, this is wear cross-sectional shape of an arc. In many instances and for the actual cutting conditions, the former flank wear compared to flank wear light, Therefore flank wear more generally as a tool failure of scale signs. But because many authors have said in the cutting speed of the increase, Maeto surface temperature than the knife surface temperatures have risen faster. but because any form of wear rate is essentially temperature changes by the significant impact. Therefore, the former usually wear in high-speed cutting happen The main tool flank wear the tail is not processed with the work piece surface in contact, Therefore flank wear than wear along with the ends more visible, which is the most common. This is because the local effect, which is as rough on the surface has hardened layer, This effect is by cutting in front of the hardening of t he work piece. Not just cutting, and as oxidation skin, the blade local high temperature will also cause this effect. This partial wear normally referred to as pit sexual wear, but occasionally it is very serious. Despite the emergence of the pits on the Cutting Tool nature is not meaningful impact, but often pits gradually become darker If cutting continued the case, then there cutter fracture crisis If any form of sexual allowed to wear, eventually wear rate increase obviously will be a tool to destroy failure destruction, that will no longer tool for cutting, cause the work piece scrapped, it is good, can cause serious damage machine. For various carbide cutting tools and for the various types of wear, in the event of a serious lapse, on the tool that has reached the end of the life cycle. But for various high-speed steel cutting tools and wear belonging to the non-uniformity of wear, has been found : When the wear and even to allow for a serious lapse, the most meaningful is that the tool can re-mill use, of course, In practice, cutting the time to use than the short time lapse. Several phenomena are one tool serious lapse began features : the most common is the sudden increase cutting force, appeared on the work piece burning ring patterns and an increase in noise.The Effect of Changes in Cutting Parameters on Cutting TemperaturesIn metal cutting operations heat is ge
收藏